IndicBERT_Finetuned_Final

This model is a fine-tuned version of ai4bharat/indic-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6539
  • Accuracy: 0.7227
  • Precision: 0.7377
  • Recall: 0.7227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall
0.8979 1.0 190 0.9064 0.5493 0.3712 0.5493
0.807 2.0 380 0.7564 0.65 0.6417 0.65
0.6731 3.0 570 0.6962 0.6833 0.7411 0.6833
0.6579 4.0 760 0.6723 0.6987 0.7213 0.6987
0.5946 5.0 950 0.6539 0.7227 0.7377 0.7227

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
240M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Abhi964/IndicBERT_Finetuned_Final

Finetuned
(25)
this model