YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

The 155000 step version has about 158,100,000 prompt samples weight trained using the

AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3

This T5-small model is fried to echo and interpolate math in complex intended ways. I haven't given it the full robust check yet, but it's definitely pretty fed.

This adapter here is trained using T5 inputs with this code below.

This isn't a bad first test. I will be improving the adapter with common lora techniques, including more techniques from training LLM-style loras, and including additional loss methodologies while simultaneously including more advanced and carefully curated response formulas to the way the adapter responded to training and the extrapolative math from the CLIP_L adapted response.

Given time I'm certain this will work; whether it be creating a layered lora structure to interpolate differences layer by layer within the clip_l, or perhaps in a much more direct neuron interpolation. Time will tell and I'm definitely enjoying this sort of thing.

Errors to address in the next;

  • There is a clamping index error that tends to rear it's head that I haven't had time to track down. It'll cause solid black images from the velocity sigmas being too heavy.
  • Occasionally the entire structure of a generation collapses, which means the sigmas aren't lined up correctly - creating malformed sigma responses.
  • Occasionally the substructure interprets the request incorrectly; this is due to the tokenization being inaccurately attuned for some spaces than others and this next version will have node weighting for specific attention head sectors to account for it.

There's many challenges ahead to reach the interpolation endpoint but it's definitely an adaptive journey.

This is stage 1 of multiple stages to make the recreatable pragmatic outcomes needed in order to build the proofs required to recreate the Beatrix interpolation model - into useful utiliizations outside of diffusion.

This process adapts multiple similar methods as what I used to create the Beatrix model, but it's not 1:1 by any stretch of the measure.

I will be slowly releasing parts of Beatrix in training diagrams and stage the methodologies about how she works, so the interested experts will be capable of rationalizing why this model does what it does.

Because I really don't know why Beatrix works the way she does, and I'm not going to just release something like that until I understand WHY it skips and hops past entropy.

77 tokens - not 64, there's no need to upscale the most recent 77tok version; it's built to the same plane as CLIP_L now.

def main():
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # HF Hub settings
    hf_repo_id         = "AbstractPhil/t5-to-vit-l-14-velocity-adapter-v3-100m-77tok"
    push_every_n_steps = 5000

    # Tokenizers & frozen models
    t5_tok   = T5TokenizerFast.from_pretrained("t5-small")
    t5_mod   = T5EncoderModel.from_pretrained(
                  "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3"
              ).to(device).eval()
    clip_tok = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
    clip_mod = CLIPTextModel.from_pretrained(
                  "openai/clip-vit-large-patch14"
              ).to(device).eval()

    # Adapter & optimizer
    adapter   = RobustVelocityAdapter(out_tokens=77).to(device)
    optimizer = optim.AdamW(adapter.parameters(), lr=5e-4)

    # Compile models for speed
    t5_mod   = torch.compile(t5_mod)
    clip_mod = torch.compile(clip_mod)
    adapter  = torch.compile(adapter)

    scaler = GradScaler()  # for mixed precision

    # Data
    dataset = ParsedMultiCharDataset("AbstractPhil/human-templated-captions-1b",
                                     num_files=12)
    loader  = DataLoader(dataset,
                         batch_size=None,
                         num_workers=4,
                         pin_memory=True)
    iterator = iter(loader)

    batch_size    = 256
    accum_steps   = 4      # effective BS = 256 * 4 = 1024
    max_steps     = math.ceil(dataset.total_rows / batch_size)
    pbar          = tqdm(total=max_steps, desc="Adapter training")

    for step in range(1, max_steps+1):
        # zero grads on actual step
        if (step-1) % accum_steps == 0:
            optimizer.zero_grad()

        # 1) Collect batch
        texts = []
        for _ in range(batch_size):
            try:
                _, txt = next(iterator)
            except StopIteration:
                iterator = iter(loader)
                _, txt = next(iterator)
            texts.append(txt)

        # 2) Tokenize
        t5_inputs   = t5_tok(texts,
                             padding=True,
                             truncation=True,
                             max_length=77,
                             return_tensors="pt").to(device)
        clip_inputs = clip_tok(texts,
                               padding="max_length",
                               truncation=True,
                               max_length=77,
                               return_tensors="pt").to(device)

        # 3) Forward + loss in mixed precision
        with autocast():
            t5_seq   = t5_mod(**t5_inputs).last_hidden_state      # [B,77,512]
            clip_seq = clip_mod(**clip_inputs).last_hidden_state  # [B,77,768]

            anchor_pred, delta_pred, sigma_pred = adapter(t5_seq)
            delta_target = clip_seq - anchor_pred

            loss_delta  = hetero_loss(delta_pred, delta_target, sigma_pred)
            # cosine anchor alignment
            cos_sim     = nn.functional.cosine_similarity(
                              anchor_pred.reshape(-1,768),
                              clip_seq.reshape(-1,768),
                              dim=-1
                          ).mean()
            loss_anchor = (1 - cos_sim) * 0.1

            loss = loss_delta + loss_anchor
            loss = loss / accum_steps  # scale for accumulation

        # 4) Backward + optimizer step
        scaler.scale(loss).backward()
        if step % accum_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(adapter.parameters(), 1.0)
            scaler.step(optimizer)
            scaler.update()

        pbar.update(1)
        pbar.set_postfix(loss=(loss.item() * accum_steps))

        # 5) Save & push every N steps
        if step % push_every_n_steps == 0:
            ckpt = f"/content/drive/MyDrive/t5-adapter/t5-to-vit-l-14-velocity-adapter-v3-100m-77tok_step_{step}.safetensors"
            save_file(adapter.state_dict(), ckpt)
            #upload_file(ckpt, ckpt, repo_id=hf_repo_id)
            

    pbar.close()

You'll need to snip out the __orig layer extensions that got snapped into it when I saved.

Still not quite sure how to fix that without just editing before saving, but I think it's causing some sort of additional effects that I'm unaware of. I don't want to save as pt because they are considered unsafe and I don't want this to be considered unsafe for use.

You can inference the test version using stable-diffusion-15 as an example test. The CLIP_L responses fall apart when too many nodes hit those guidance bells, but it's definitely a powerful first test using divergent systems.

Should just run clean on colab using a l4.

# Optimized inference_adapter.py

import torch
import math
from PIL import Image
from torchvision.transforms import ToPILImage
from safetensors.torch import load_file as load_safetensors

from transformers import (
    T5TokenizerFast, T5EncoderModel,
    CLIPTokenizerFast, CLIPTextModel
)
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    EulerAncestralDiscreteScheduler
)
from typing import Optional

# ─────────────────────────────────────────────────────────────
# 1) GLOBAL SETUP: load once, cast, eval, move
# ─────────────────────────────────────────────────────────────
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE  = torch.float16  # use fp16 for everything on GPU

# 1a) CLIP text encoder (cond + uncond)
clip_tok = CLIPTokenizerFast.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="tokenizer"
)
clip_mod = CLIPTextModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="text_encoder",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1b) T5 encoder
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained(
    "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1c) Velocity Adapter local directory
local_adapter_directory = "roba_adapter_step_19500.safetensors" # opens the state below.


# 1c) Adapter
import torch
import torch.nn as nn
import torch.nn.functional as F

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class RobustVelocityAdapter(nn.Module):
    """
    Fixed version: manual multi-head cross-attention emits [B, heads, Q, K] scores
    so that _add_rel_pos_bias can unpack them correctly.
    """
    def __init__(
        self,
        t5_dim: int = 512,
        clip_dim: int = 768,
        hidden_dim: int = 1024,
        out_tokens: int = 77,      # now aligned with your T5 finetune
        self_attn_layers: int = 2,
        cross_heads: int = 8,
        max_rel_pos: int = 128,
    ):
        super().__init__()
        self.out_tokens  = out_tokens
        self.cross_heads = cross_heads
        self.head_dim    = t5_dim // cross_heads
        self.max_rel_pos = max_rel_pos

        # 1) Self-attention stack
        self.self_attn = nn.ModuleList()
        self.self_norm = nn.ModuleList()
        for _ in range(self_attn_layers):
            self.self_attn.append(nn.MultiheadAttention(t5_dim, cross_heads, batch_first=True))
            self.self_norm.append(nn.LayerNorm(t5_dim))

        # 2) Residual blocks
        def resblock():
            return nn.Sequential(
                nn.LayerNorm(t5_dim),
                nn.Linear(t5_dim, t5_dim),
                nn.GELU(),
                nn.Linear(t5_dim, t5_dim),
            )
        self.res1 = resblock()
        self.res2 = resblock()

        # 3) Learned queries for cross-attn
        self.query_pos = nn.Parameter(torch.randn(out_tokens, t5_dim))

        # 4) Projection heads
        self.anchor_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.delta_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.var_proj   = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.gate_proj  = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim), nn.Sigmoid()
        )

        # 5) Relative-position bias table
        self.rel_bias = nn.Parameter(torch.zeros(2*max_rel_pos-1, cross_heads))

        # 6) Norm after cross-attn
        self.cross_norm = nn.LayerNorm(t5_dim)

    def _add_rel_pos_bias(self, attn_scores: torch.Tensor) -> torch.Tensor:
        """
        attn_scores: [B, heads, Q, K]
        returns:      attn_scores + bias  where bias is [B, heads, Q, K]
        """
        B, H, Q, K = attn_scores.shape
        device = attn_scores.device

        # 1) Query & key position indices
        idx_q = torch.arange(Q, device=device)       # [Q]
        idx_k = torch.arange(K, device=device)       # [K]

        # 2) Compute relative distances for every (q, k) pair
        #    rel[i,j] = idx_q[i] - idx_k[j]
        rel = idx_q.unsqueeze(1) - idx_k.unsqueeze(0)  # [Q, K]

        # 3) Clamp & shift into bias table range [0, 2*max_rel-2]
        max_rel = self.max_rel_pos
        rel = rel.clamp(-max_rel+1, max_rel-1) + (max_rel - 1)

        # 4) Lookup per-head biases
        #    self.rel_bias has shape [2*max_rel-1, H]
        bias = self.rel_bias[rel]            # [Q, K, H]
        bias = bias.permute(2, 0, 1)         # [H, Q, K]

        # 5) Broadcast to [B, H, Q, K] and add
        bias = bias.unsqueeze(0).expand(B, -1, -1, -1)
        return attn_scores + bias


    def forward(self, t5_seq: torch.Tensor):
        """
        t5_seq: [B, L, t5_dim]
        returns:
          anchor: [B, out_tokens, clip_dim]
          delta:  [B, out_tokens, clip_dim]
          sigma:  [B, out_tokens, clip_dim]
        """
        x = t5_seq
        B, L, D = x.shape

        # 1) Self-attention + residual
        for attn, norm in zip(self.self_attn, self.self_norm):
            res, _ = attn(x, x, x)
            x = norm(x + res)

        # 2) Residual blocks
        x = x + self.res1(x)
        x = x + self.res2(x)

        # 3) Prepare queries & split heads
        queries = self.query_pos.unsqueeze(0).expand(B, -1, -1)   # [B, Q, D]
        # reshape into heads
        q = queries.view(B, self.out_tokens, self.cross_heads, self.head_dim).permute(0,2,1,3)
        k = x.view(B, L, self.cross_heads, self.head_dim).permute(0,2,1,3)
        v = k

        # 4) Scaled dot-product to get [B, heads, Q, K]
        scores = (q @ k.transpose(-2,-1)) / math.sqrt(self.head_dim)
        scores = self._add_rel_pos_bias(scores)
        probs  = F.softmax(scores, dim=-1)                        # [B, H, Q, K]

        # 5) Attend & merge heads β†’ [B, Q, D]
        ctx = probs @ v                                           # [B, H, Q, head_dim]
        ctx = ctx.permute(0,2,1,3).reshape(B, self.out_tokens, D)
        ctx = self.cross_norm(ctx)

        # 6) Project to anchor, delta_mean, delta_logvar, gate
        anchor       = self.anchor_proj(ctx)
        delta_mean   = self.delta_proj(ctx)
        delta_logvar = self.var_proj(ctx)
        gate         = self.gate_proj(ctx)

        # 7) Compute sigma & gated delta
        sigma = torch.exp(0.5 * delta_logvar)
        delta = delta_mean * gate

        return anchor, delta, sigma

import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.transforms import ToPILImage
from safetensors.torch import load_file as load_safetensors

from transformers import (
    CLIPTokenizer, CLIPTextModel,
    T5TokenizerFast, T5EncoderModel
)
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    EulerAncestralDiscreteScheduler
)

# 1) GLOBAL SETUP
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE  = torch.float32

# 1a) CLIP tokenizer & text encoder
clip_tok = CLIPTokenizer.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="tokenizer"
)
clip_mod = CLIPTextModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="text_encoder",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1b) U-Net, VAE, Scheduler
unet = UNet2DConditionModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="unet",
    torch_dtype=DTYPE
).to(DEVICE).eval()
vae = AutoencoderKL.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="vae",
    torch_dtype=DTYPE
).to(DEVICE).eval()
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="scheduler"
)

# 1c) T5
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained(
    "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1d) velocity prediction adapter
adapter = RobustVelocityAdapter(out_tokens=77).to(DEVICE).eval()
state   = load_safetensors(local_adapter_directory, device="cpu")
clean   = {k.replace("_orig_mod.", ""): v for k, v in state.items()}
adapter.load_state_dict(clean, strict=False)
adapter.to(DEVICE).eval()



# 2) GENERATION FUNCTION
@torch.no_grad()
def generate_image_with_adapter(
    prompt:           str,
    seed:             int   = 42,
    steps:            int   = 50,
    adapter_scale:    float = 0.5,
    guidance_scale:   float = 7.5,
    height:           int   = 512,
    width:            int   = 512,
):
    gen = torch.Generator(device=DEVICE).manual_seed(seed)

    # 2.1) CLIP embeddings
    clip_in    = clip_tok([prompt],
                          max_length=clip_tok.model_max_length,
                          padding="max_length", truncation=True,
                          return_tensors="pt").to(DEVICE)
    clip_cond  = clip_mod(**clip_in).last_hidden_state  # [1,77,768]

    empty_in   = clip_tok([""],
                          max_length=clip_tok.model_max_length,
                          padding="max_length", truncation=True,
                          return_tensors="pt").to(DEVICE)
    clip_uncond= clip_mod(**empty_in).last_hidden_state # [1,77,768]

    # 2.2) T5 β†’ adapter β†’ anchor, delta, sigma (77 tokens)
    t5_in      = t5_tok(prompt,
                        max_length=77, padding="max_length",
                        truncation=True, return_tensors="pt").to(DEVICE)
    t5_seq     = t5_mod(**t5_in).last_hidden_state      # [1,77,512]
    anchor, delta, sigma = adapter(t5_seq)              # each [1,77,768]

    # 2.3) Upsample to 77 tokens
    T_clip = clip_cond.shape[1]  # 77
    def up(x):
        return F.interpolate(
            x.permute(0,2,1),
            size=T_clip, mode="linear", align_corners=False
        ).permute(0,2,1)
    anchor = up(anchor)
    delta  = up(delta)
    sigma  = up(sigma)

    # 2.4) Οƒ-based noise scaling
    raw_ns      = sigma.mean().clamp(0.1, 2.0).item()
    noise_scale = 1.0 + adapter_scale * (raw_ns - 1.0)

    # 2.5) Initialize latents
    latents = torch.randn(
        (1, unet.config.in_channels, height//8, width//8),
        generator=gen, device=DEVICE, dtype=DTYPE
    ) * scheduler.init_noise_sigma * noise_scale
    scheduler.set_timesteps(steps, device=DEVICE)

    # 2.6) Denoising with adapter guidance
    for i, t in enumerate(scheduler.timesteps):
        alpha = i / (len(scheduler.timesteps)-1)
        aw    = adapter_scale * alpha
        cw    = 1.0 - aw

        # blend anchors
        blended   = clip_cond * cw + anchor * aw

        # per-token confidence
        eps       = 1e-6
        conf      = 1.0 / (sigma + eps)
        conf      = conf / conf.amax(dim=(1,2), keepdim=True)

        # gated delta
        gated_delta = delta * aw * conf

        # final cond embedding
        cond_embed  = blended + gated_delta  # [1,77,768]

        # UNet forward
        lat_in = scheduler.scale_model_input(latents, t)
        lat_in = torch.cat([lat_in, lat_in], dim=0)
        embeds = torch.cat([clip_uncond, cond_embed], dim=0)
        noise  = unet(lat_in, t, encoder_hidden_states=embeds).sample
        u, c   = noise.chunk(2)
        guided = u + guidance_scale * (c - u)
        latents= scheduler.step(guided, t, latents, generator=gen).prev_sample

    # 2.7) Decode
    dec_lat = latents / vae.config.scaling_factor
    image_t = vae.decode(dec_lat).sample
    image_t = (image_t.clamp(-1,1) + 1) / 2
    return ToPILImage()(image_t[0])

# 3) RUN EXAMPLE
if __name__ == "__main__":
    out = generate_image_with_adapter(
        "silly dog wearing a batman costume, high resolution, studio lighting",
        seed=1234, steps=50,
        adapter_scale=0.5, guidance_scale=7.5
    )
    out.save("sd15_with_adapter.png")
    print("Saved sd15_with_adapter.png")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support