File size: 19,537 Bytes
b29898a
 
 
 
 
 
890fb8d
 
c5b64a3
890fb8d
 
b29898a
50e410d
 
 
 
 
 
 
140f873
 
 
 
 
 
 
 
3cbdb95
 
b29898a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbdb95
 
b29898a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb60b42
 
 
 
6dfa555
 
 
fb60b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dfa555
 
 
 
fb60b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbdb95
fb60b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dfa555
fb60b42
 
 
 
 
 
6dfa555
3cbdb95
6dfa555
fb60b42
 
 
 
6dfa555
 
fb60b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbdb95
fb60b42
3cbdb95
fb60b42
3cbdb95
 
fb60b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
The 155000 step version has about 158,100,000 prompt samples weight trained using the 

AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3

This T5-small model is fried to echo and interpolate math in complex intended ways. I haven't given it the full robust check yet, but it's definitely pretty fed.

This adapter here is trained using T5 inputs with this code below.

This isn't a bad first test. I will be improving the adapter with common lora techniques, including more techniques from training LLM-style loras, and including additional loss methodologies while simultaneously including more advanced and carefully curated response formulas to the way the adapter responded to training and the extrapolative math from the CLIP_L adapted response.

Given time I'm certain this will work; whether it be creating a layered lora structure to interpolate differences layer by layer within the clip_l, or perhaps in a much more direct neuron interpolation. Time will tell and I'm definitely enjoying this sort of thing.

Errors to address in the next;
* There is a clamping index error that tends to rear it's head that I haven't had time to track down. It'll cause solid black images from the velocity sigmas being too heavy.
* Occasionally the entire structure of a generation collapses, which means the sigmas aren't lined up correctly - creating malformed sigma responses.
* Occasionally the substructure interprets the request incorrectly; this is due to the tokenization being inaccurately attuned for some spaces than others and this next version will have node weighting for specific attention head sectors to account for it.

There's many challenges ahead to reach the interpolation endpoint but it's definitely an adaptive journey.

This is stage 1 of multiple stages to make the recreatable pragmatic outcomes needed in order to build the proofs required to recreate the Beatrix interpolation model - into useful utiliizations outside of diffusion.

This process adapts multiple similar methods as what I used to create the Beatrix model, but it's not 1:1 by any stretch of the measure.

I will be slowly releasing parts of Beatrix in training diagrams and stage the methodologies about how she works, so the interested experts will be capable of rationalizing why this model does what it does.

Because I really don't know why Beatrix works the way she does, and I'm not going to just release something like that until I understand WHY it skips and hops past entropy.

77 tokens - not 64, there's no need to upscale the most recent 77tok version; it's built to the same plane as CLIP_L now.


```
def main():
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # HF Hub settings
    hf_repo_id         = "AbstractPhil/t5-to-vit-l-14-velocity-adapter-v3-100m-77tok"
    push_every_n_steps = 5000

    # Tokenizers & frozen models
    t5_tok   = T5TokenizerFast.from_pretrained("t5-small")
    t5_mod   = T5EncoderModel.from_pretrained(
                  "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3"
              ).to(device).eval()
    clip_tok = CLIPTokenizerFast.from_pretrained("openai/clip-vit-large-patch14")
    clip_mod = CLIPTextModel.from_pretrained(
                  "openai/clip-vit-large-patch14"
              ).to(device).eval()

    # Adapter & optimizer
    adapter   = RobustVelocityAdapter(out_tokens=77).to(device)
    optimizer = optim.AdamW(adapter.parameters(), lr=5e-4)

    # Compile models for speed
    t5_mod   = torch.compile(t5_mod)
    clip_mod = torch.compile(clip_mod)
    adapter  = torch.compile(adapter)

    scaler = GradScaler()  # for mixed precision

    # Data
    dataset = ParsedMultiCharDataset("AbstractPhil/human-templated-captions-1b",
                                     num_files=12)
    loader  = DataLoader(dataset,
                         batch_size=None,
                         num_workers=4,
                         pin_memory=True)
    iterator = iter(loader)

    batch_size    = 256
    accum_steps   = 4      # effective BS = 256 * 4 = 1024
    max_steps     = math.ceil(dataset.total_rows / batch_size)
    pbar          = tqdm(total=max_steps, desc="Adapter training")

    for step in range(1, max_steps+1):
        # zero grads on actual step
        if (step-1) % accum_steps == 0:
            optimizer.zero_grad()

        # 1) Collect batch
        texts = []
        for _ in range(batch_size):
            try:
                _, txt = next(iterator)
            except StopIteration:
                iterator = iter(loader)
                _, txt = next(iterator)
            texts.append(txt)

        # 2) Tokenize
        t5_inputs   = t5_tok(texts,
                             padding=True,
                             truncation=True,
                             max_length=77,
                             return_tensors="pt").to(device)
        clip_inputs = clip_tok(texts,
                               padding="max_length",
                               truncation=True,
                               max_length=77,
                               return_tensors="pt").to(device)

        # 3) Forward + loss in mixed precision
        with autocast():
            t5_seq   = t5_mod(**t5_inputs).last_hidden_state      # [B,77,512]
            clip_seq = clip_mod(**clip_inputs).last_hidden_state  # [B,77,768]

            anchor_pred, delta_pred, sigma_pred = adapter(t5_seq)
            delta_target = clip_seq - anchor_pred

            loss_delta  = hetero_loss(delta_pred, delta_target, sigma_pred)
            # cosine anchor alignment
            cos_sim     = nn.functional.cosine_similarity(
                              anchor_pred.reshape(-1,768),
                              clip_seq.reshape(-1,768),
                              dim=-1
                          ).mean()
            loss_anchor = (1 - cos_sim) * 0.1

            loss = loss_delta + loss_anchor
            loss = loss / accum_steps  # scale for accumulation

        # 4) Backward + optimizer step
        scaler.scale(loss).backward()
        if step % accum_steps == 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(adapter.parameters(), 1.0)
            scaler.step(optimizer)
            scaler.update()

        pbar.update(1)
        pbar.set_postfix(loss=(loss.item() * accum_steps))

        # 5) Save & push every N steps
        if step % push_every_n_steps == 0:
            ckpt = f"/content/drive/MyDrive/t5-adapter/t5-to-vit-l-14-velocity-adapter-v3-100m-77tok_step_{step}.safetensors"
            save_file(adapter.state_dict(), ckpt)
            #upload_file(ckpt, ckpt, repo_id=hf_repo_id)
            

    pbar.close()

```

### You'll need to snip out the __orig layer extensions that got snapped into it when I saved.
Still not quite sure how to fix that without just editing before saving, but I think it's causing some sort of additional effects that I'm unaware of.
I don't want to save as pt because they are considered unsafe and I don't want this to be considered unsafe for use.

You can inference the test version using stable-diffusion-15 as an example test.
The CLIP_L responses fall apart when too many nodes hit those guidance bells, but it's definitely a powerful first test using divergent systems.

Should just run clean on colab using a l4.

```
# Optimized inference_adapter.py

import torch
import math
from PIL import Image
from torchvision.transforms import ToPILImage
from safetensors.torch import load_file as load_safetensors

from transformers import (
    T5TokenizerFast, T5EncoderModel,
    CLIPTokenizerFast, CLIPTextModel
)
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    EulerAncestralDiscreteScheduler
)
from typing import Optional

# ─────────────────────────────────────────────────────────────
# 1) GLOBAL SETUP: load once, cast, eval, move
# ─────────────────────────────────────────────────────────────
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE  = torch.float16  # use fp16 for everything on GPU

# 1a) CLIP text encoder (cond + uncond)
clip_tok = CLIPTokenizerFast.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="tokenizer"
)
clip_mod = CLIPTextModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="text_encoder",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1b) T5 encoder
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained(
    "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1c) Velocity Adapter local directory
local_adapter_directory = "roba_adapter_step_19500.safetensors" # opens the state below.


# 1c) Adapter
import torch
import torch.nn as nn
import torch.nn.functional as F

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class RobustVelocityAdapter(nn.Module):
    """
    Fixed version: manual multi-head cross-attention emits [B, heads, Q, K] scores
    so that _add_rel_pos_bias can unpack them correctly.
    """
    def __init__(
        self,
        t5_dim: int = 512,
        clip_dim: int = 768,
        hidden_dim: int = 1024,
        out_tokens: int = 77,      # now aligned with your T5 finetune
        self_attn_layers: int = 2,
        cross_heads: int = 8,
        max_rel_pos: int = 128,
    ):
        super().__init__()
        self.out_tokens  = out_tokens
        self.cross_heads = cross_heads
        self.head_dim    = t5_dim // cross_heads
        self.max_rel_pos = max_rel_pos

        # 1) Self-attention stack
        self.self_attn = nn.ModuleList()
        self.self_norm = nn.ModuleList()
        for _ in range(self_attn_layers):
            self.self_attn.append(nn.MultiheadAttention(t5_dim, cross_heads, batch_first=True))
            self.self_norm.append(nn.LayerNorm(t5_dim))

        # 2) Residual blocks
        def resblock():
            return nn.Sequential(
                nn.LayerNorm(t5_dim),
                nn.Linear(t5_dim, t5_dim),
                nn.GELU(),
                nn.Linear(t5_dim, t5_dim),
            )
        self.res1 = resblock()
        self.res2 = resblock()

        # 3) Learned queries for cross-attn
        self.query_pos = nn.Parameter(torch.randn(out_tokens, t5_dim))

        # 4) Projection heads
        self.anchor_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.delta_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.var_proj   = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.gate_proj  = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim), nn.Sigmoid()
        )

        # 5) Relative-position bias table
        self.rel_bias = nn.Parameter(torch.zeros(2*max_rel_pos-1, cross_heads))

        # 6) Norm after cross-attn
        self.cross_norm = nn.LayerNorm(t5_dim)

    def _add_rel_pos_bias(self, attn_scores: torch.Tensor) -> torch.Tensor:
        """
        attn_scores: [B, heads, Q, K]
        returns:      attn_scores + bias  where bias is [B, heads, Q, K]
        """
        B, H, Q, K = attn_scores.shape
        device = attn_scores.device

        # 1) Query & key position indices
        idx_q = torch.arange(Q, device=device)       # [Q]
        idx_k = torch.arange(K, device=device)       # [K]

        # 2) Compute relative distances for every (q, k) pair
        #    rel[i,j] = idx_q[i] - idx_k[j]
        rel = idx_q.unsqueeze(1) - idx_k.unsqueeze(0)  # [Q, K]

        # 3) Clamp & shift into bias table range [0, 2*max_rel-2]
        max_rel = self.max_rel_pos
        rel = rel.clamp(-max_rel+1, max_rel-1) + (max_rel - 1)

        # 4) Lookup per-head biases
        #    self.rel_bias has shape [2*max_rel-1, H]
        bias = self.rel_bias[rel]            # [Q, K, H]
        bias = bias.permute(2, 0, 1)         # [H, Q, K]

        # 5) Broadcast to [B, H, Q, K] and add
        bias = bias.unsqueeze(0).expand(B, -1, -1, -1)
        return attn_scores + bias


    def forward(self, t5_seq: torch.Tensor):
        """
        t5_seq: [B, L, t5_dim]
        returns:
          anchor: [B, out_tokens, clip_dim]
          delta:  [B, out_tokens, clip_dim]
          sigma:  [B, out_tokens, clip_dim]
        """
        x = t5_seq
        B, L, D = x.shape

        # 1) Self-attention + residual
        for attn, norm in zip(self.self_attn, self.self_norm):
            res, _ = attn(x, x, x)
            x = norm(x + res)

        # 2) Residual blocks
        x = x + self.res1(x)
        x = x + self.res2(x)

        # 3) Prepare queries & split heads
        queries = self.query_pos.unsqueeze(0).expand(B, -1, -1)   # [B, Q, D]
        # reshape into heads
        q = queries.view(B, self.out_tokens, self.cross_heads, self.head_dim).permute(0,2,1,3)
        k = x.view(B, L, self.cross_heads, self.head_dim).permute(0,2,1,3)
        v = k

        # 4) Scaled dot-product to get [B, heads, Q, K]
        scores = (q @ k.transpose(-2,-1)) / math.sqrt(self.head_dim)
        scores = self._add_rel_pos_bias(scores)
        probs  = F.softmax(scores, dim=-1)                        # [B, H, Q, K]

        # 5) Attend & merge heads β†’ [B, Q, D]
        ctx = probs @ v                                           # [B, H, Q, head_dim]
        ctx = ctx.permute(0,2,1,3).reshape(B, self.out_tokens, D)
        ctx = self.cross_norm(ctx)

        # 6) Project to anchor, delta_mean, delta_logvar, gate
        anchor       = self.anchor_proj(ctx)
        delta_mean   = self.delta_proj(ctx)
        delta_logvar = self.var_proj(ctx)
        gate         = self.gate_proj(ctx)

        # 7) Compute sigma & gated delta
        sigma = torch.exp(0.5 * delta_logvar)
        delta = delta_mean * gate

        return anchor, delta, sigma

import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.transforms import ToPILImage
from safetensors.torch import load_file as load_safetensors

from transformers import (
    CLIPTokenizer, CLIPTextModel,
    T5TokenizerFast, T5EncoderModel
)
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    EulerAncestralDiscreteScheduler
)

# 1) GLOBAL SETUP
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE  = torch.float32

# 1a) CLIP tokenizer & text encoder
clip_tok = CLIPTokenizer.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="tokenizer"
)
clip_mod = CLIPTextModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="text_encoder",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1b) U-Net, VAE, Scheduler
unet = UNet2DConditionModel.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="unet",
    torch_dtype=DTYPE
).to(DEVICE).eval()
vae = AutoencoderKL.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="vae",
    torch_dtype=DTYPE
).to(DEVICE).eval()
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(
    "runwayml/stable-diffusion-v1-5", subfolder="scheduler"
)

# 1c) T5
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained(
    "AbstractPhil/T5-Small-Human-Attentive-Try2-Pass3",
    torch_dtype=DTYPE
).to(DEVICE).eval()

# 1d) velocity prediction adapter
adapter = RobustVelocityAdapter(out_tokens=77).to(DEVICE).eval()
state   = load_safetensors(local_adapter_directory, device="cpu")
clean   = {k.replace("_orig_mod.", ""): v for k, v in state.items()}
adapter.load_state_dict(clean, strict=False)
adapter.to(DEVICE).eval()



# 2) GENERATION FUNCTION
@torch.no_grad()
def generate_image_with_adapter(
    prompt:           str,
    seed:             int   = 42,
    steps:            int   = 50,
    adapter_scale:    float = 0.5,
    guidance_scale:   float = 7.5,
    height:           int   = 512,
    width:            int   = 512,
):
    gen = torch.Generator(device=DEVICE).manual_seed(seed)

    # 2.1) CLIP embeddings
    clip_in    = clip_tok([prompt],
                          max_length=clip_tok.model_max_length,
                          padding="max_length", truncation=True,
                          return_tensors="pt").to(DEVICE)
    clip_cond  = clip_mod(**clip_in).last_hidden_state  # [1,77,768]

    empty_in   = clip_tok([""],
                          max_length=clip_tok.model_max_length,
                          padding="max_length", truncation=True,
                          return_tensors="pt").to(DEVICE)
    clip_uncond= clip_mod(**empty_in).last_hidden_state # [1,77,768]

    # 2.2) T5 β†’ adapter β†’ anchor, delta, sigma (77 tokens)
    t5_in      = t5_tok(prompt,
                        max_length=77, padding="max_length",
                        truncation=True, return_tensors="pt").to(DEVICE)
    t5_seq     = t5_mod(**t5_in).last_hidden_state      # [1,77,512]
    anchor, delta, sigma = adapter(t5_seq)              # each [1,77,768]

    # 2.3) Upsample to 77 tokens
    T_clip = clip_cond.shape[1]  # 77
    def up(x):
        return F.interpolate(
            x.permute(0,2,1),
            size=T_clip, mode="linear", align_corners=False
        ).permute(0,2,1)
    anchor = up(anchor)
    delta  = up(delta)
    sigma  = up(sigma)

    # 2.4) Οƒ-based noise scaling
    raw_ns      = sigma.mean().clamp(0.1, 2.0).item()
    noise_scale = 1.0 + adapter_scale * (raw_ns - 1.0)

    # 2.5) Initialize latents
    latents = torch.randn(
        (1, unet.config.in_channels, height//8, width//8),
        generator=gen, device=DEVICE, dtype=DTYPE
    ) * scheduler.init_noise_sigma * noise_scale
    scheduler.set_timesteps(steps, device=DEVICE)

    # 2.6) Denoising with adapter guidance
    for i, t in enumerate(scheduler.timesteps):
        alpha = i / (len(scheduler.timesteps)-1)
        aw    = adapter_scale * alpha
        cw    = 1.0 - aw

        # blend anchors
        blended   = clip_cond * cw + anchor * aw

        # per-token confidence
        eps       = 1e-6
        conf      = 1.0 / (sigma + eps)
        conf      = conf / conf.amax(dim=(1,2), keepdim=True)

        # gated delta
        gated_delta = delta * aw * conf

        # final cond embedding
        cond_embed  = blended + gated_delta  # [1,77,768]

        # UNet forward
        lat_in = scheduler.scale_model_input(latents, t)
        lat_in = torch.cat([lat_in, lat_in], dim=0)
        embeds = torch.cat([clip_uncond, cond_embed], dim=0)
        noise  = unet(lat_in, t, encoder_hidden_states=embeds).sample
        u, c   = noise.chunk(2)
        guided = u + guidance_scale * (c - u)
        latents= scheduler.step(guided, t, latents, generator=gen).prev_sample

    # 2.7) Decode
    dec_lat = latents / vae.config.scaling_factor
    image_t = vae.decode(dec_lat).sample
    image_t = (image_t.clamp(-1,1) + 1) / 2
    return ToPILImage()(image_t[0])

# 3) RUN EXAMPLE
if __name__ == "__main__":
    out = generate_image_with_adapter(
        "silly dog wearing a batman costume, high resolution, studio lighting",
        seed=1234, steps=50,
        adapter_scale=0.5, guidance_scale=7.5
    )
    out.save("sd15_with_adapter.png")
    print("Saved sd15_with_adapter.png")