File size: 5,275 Bytes
e8d2a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

class RobustVelocityAdapter(nn.Module):
    """
    Fixed version: manual multi-head cross-attention emits [B, heads, Q, K] scores
    so that _add_rel_pos_bias can unpack them correctly.
    """
    def __init__(
        self,
        t5_dim: int = 512,
        clip_dim: int = 768,
        hidden_dim: int = 1024,
        out_tokens: int = 64,      # now aligned with your T5 finetune
        self_attn_layers: int = 2,
        cross_heads: int = 8,
        max_rel_pos: int = 128,
    ):
        super().__init__()
        self.out_tokens  = out_tokens
        self.cross_heads = cross_heads
        self.head_dim    = t5_dim // cross_heads
        self.max_rel_pos = max_rel_pos

        # 1) Self-attention stack
        self.self_attn = nn.ModuleList()
        self.self_norm = nn.ModuleList()
        for _ in range(self_attn_layers):
            self.self_attn.append(nn.MultiheadAttention(t5_dim, cross_heads, batch_first=True))
            self.self_norm.append(nn.LayerNorm(t5_dim))

        # 2) Residual blocks
        def resblock():
            return nn.Sequential(
                nn.LayerNorm(t5_dim),
                nn.Linear(t5_dim, t5_dim),
                nn.GELU(),
                nn.Linear(t5_dim, t5_dim),
            )
        self.res1 = resblock()
        self.res2 = resblock()

        # 3) Learned queries for cross-attn
        self.query_pos = nn.Parameter(torch.randn(out_tokens, t5_dim))

        # 4) Projection heads
        self.anchor_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.delta_proj = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.var_proj   = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim)
        )
        self.gate_proj  = nn.Sequential(
            nn.Linear(t5_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, clip_dim), nn.Sigmoid()
        )

        # 5) Relative-position bias table
        self.rel_bias = nn.Parameter(torch.zeros(2*max_rel_pos-1, cross_heads))

        # 6) Norm after cross-attn
        self.cross_norm = nn.LayerNorm(t5_dim)

    def _add_rel_pos_bias(self, attn_scores: torch.Tensor) -> torch.Tensor:
        """
        attn_scores: [B, heads, Q, K]
        returns:      attn_scores + bias  where bias is [B, heads, Q, K]
        """
        B, H, Q, K = attn_scores.shape
        device = attn_scores.device

        # 1) Query & key position indices
        idx_q = torch.arange(Q, device=device)       # [Q]
        idx_k = torch.arange(K, device=device)       # [K]

        # 2) Compute relative distances for every (q, k) pair
        #    rel[i,j] = idx_q[i] - idx_k[j]
        rel = idx_q.unsqueeze(1) - idx_k.unsqueeze(0)  # [Q, K]

        # 3) Clamp & shift into bias table range [0, 2*max_rel-2]
        max_rel = self.max_rel_pos
        rel = rel.clamp(-max_rel+1, max_rel-1) + (max_rel - 1)

        # 4) Lookup per-head biases
        #    self.rel_bias has shape [2*max_rel-1, H]
        bias = self.rel_bias[rel]            # [Q, K, H]
        bias = bias.permute(2, 0, 1)         # [H, Q, K]

        # 5) Broadcast to [B, H, Q, K] and add
        bias = bias.unsqueeze(0).expand(B, -1, -1, -1)
        return attn_scores + bias


    def forward(self, t5_seq: torch.Tensor):
        """
        t5_seq: [B, L, t5_dim]
        returns:
          anchor: [B, out_tokens, clip_dim]
          delta:  [B, out_tokens, clip_dim]
          sigma:  [B, out_tokens, clip_dim]
        """
        x = t5_seq
        B, L, D = x.shape

        # 1) Self-attention + residual
        for attn, norm in zip(self.self_attn, self.self_norm):
            res, _ = attn(x, x, x)
            x = norm(x + res)

        # 2) Residual blocks
        x = x + self.res1(x)
        x = x + self.res2(x)

        # 3) Prepare queries & split heads
        queries = self.query_pos.unsqueeze(0).expand(B, -1, -1)   # [B, Q, D]
        # reshape into heads
        q = queries.view(B, self.out_tokens, self.cross_heads, self.head_dim).permute(0,2,1,3)
        k = x.view(B, L, self.cross_heads, self.head_dim).permute(0,2,1,3)
        v = k

        # 4) Scaled dot-product to get [B, heads, Q, K]
        scores = (q @ k.transpose(-2,-1)) / math.sqrt(self.head_dim)
        scores = self._add_rel_pos_bias(scores)
        probs  = F.softmax(scores, dim=-1)                        # [B, H, Q, K]

        # 5) Attend & merge heads → [B, Q, D]
        ctx = probs @ v                                           # [B, H, Q, head_dim]
        ctx = ctx.permute(0,2,1,3).reshape(B, self.out_tokens, D)
        ctx = self.cross_norm(ctx)

        # 6) Project to anchor, delta_mean, delta_logvar, gate
        anchor       = self.anchor_proj(ctx)
        delta_mean   = self.delta_proj(ctx)
        delta_logvar = self.var_proj(ctx)
        gate         = self.gate_proj(ctx)

        # 7) Compute sigma & gated delta
        sigma = torch.exp(0.5 * delta_logvar)
        delta = delta_mean * gate

        return anchor, delta, sigma