AdaCodruta's picture
End of training
3471758 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2_common_voice17_finetuning
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ro
          split: test
          args: ro
        metrics:
          - name: Wer
            type: wer
            value: 1

wav2vec2_common_voice17_finetuning

This model is a fine-tuned version of facebook/wav2vec2-base on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4054
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6577 3.5461 1000 0.4788 0.9997
0.2893 7.0922 2000 0.4086 1.0
0.1997 10.6383 3000 0.4135 0.9997
0.156 14.1844 4000 0.4051 0.9992
0.138 17.7305 5000 0.4054 1.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.4.1+cu124
  • Datasets 2.21.0
  • Tokenizers 0.21.0