whisper-medium-ro_private_dataset

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9763
  • Wer Ortho: 104.4025
  • Wer: 102.3457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0288 20.0 100 3.3078 118.7421 116.9136
0.0015 40.0 200 3.6434 98.9937 97.6543
0.0017 60.0 300 3.6502 100.2516 99.1358
0.0002 80.0 400 3.8591 105.6604 103.5802
0.0001 100.0 500 3.9031 113.8365 111.9753
0.0001 120.0 600 3.9312 114.0881 112.0988
0.0001 140.0 700 3.9508 101.6352 99.7531
0.0001 160.0 800 3.9650 103.5220 101.7284
0.0001 180.0 900 3.9731 104.0252 101.9753
0.0001 200.0 1000 3.9763 104.4025 102.3457

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
18
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AdaCodruta/whisper-medium-ro_private_dataset

Finetuned
(498)
this model