ModernBERT Embed base Legal Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the AdamLucek/legal-rag-positives-synthetic dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/ModernBERT-embed-base-legal-MRL")
# Run inference
sentences = [
    'contracting/contracting-assistance-programs/sba-mentor-protege-program (last visited Apr. 19, \n2023). \n5 \n \nprotégé must demonstrate that the added mentor-protégé relationship will not adversely affect the \ndevelopment of either protégé firm (e.g., the second firm may not be a competitor of the first \nfirm).”  13 C.F.R. § 125.9(b)(3).',
    'What must the protégé demonstrate about the mentor-protégé relationship?',
    'What discretion do district courts have regarding a defendant’s invocation of FOIA exemptions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.5286 0.5162 0.4822 0.4158 0.3122
cosine_accuracy@3 0.5719 0.5487 0.5286 0.4436 0.3509
cosine_accuracy@5 0.6646 0.6414 0.5981 0.5363 0.4359
cosine_accuracy@10 0.7311 0.7172 0.6785 0.6105 0.4791
cosine_precision@1 0.5286 0.5162 0.4822 0.4158 0.3122
cosine_precision@3 0.5142 0.4982 0.4699 0.3993 0.3091
cosine_precision@5 0.3941 0.3808 0.3586 0.3128 0.2504
cosine_precision@10 0.2329 0.2272 0.2147 0.1924 0.1498
cosine_recall@1 0.1788 0.174 0.1627 0.1426 0.105
cosine_recall@3 0.4894 0.4735 0.4493 0.3836 0.2955
cosine_recall@5 0.6121 0.5911 0.5569 0.4878 0.3931
cosine_recall@10 0.7184 0.7023 0.6642 0.5963 0.4681
cosine_ndcg@10 0.63 0.6138 0.5781 0.5109 0.3956
cosine_mrr@10 0.5741 0.5593 0.5249 0.4573 0.3509
cosine_map@100 0.6186 0.6022 0.5698 0.503 0.3939

Training Details

AdamLucek/legal-rag-positives-synthetic

  • Dataset: AdamLucek/legal-rag-positives-synthetic
  • Size: 5,822 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 15 tokens
    • mean: 97.6 tokens
    • max: 153 tokens
    • min: 8 tokens
    • mean: 16.68 tokens
    • max: 41 tokens
  • Samples:
    positive anchor
    infrastructure security information,” the information at issue must, “if disclosed . . . reveal vulner-
    abilities in Department of Defense critical infrastructure.” 10 U.S.C. § 130e(f). The closest the
    Department comes is asserting that the information “individually or in the aggregate, would enable
    What type of information must reveal vulnerabilities if disclosed?
    they have bid.” Oral Arg. Tr. at 42:18–20. Plaintiffs also assert that, should this Court require the
    Polaris Solicitations to consider price at the IDIQ level, such an adjustment “adds a solicitation
    requirement that would necessarily change the overall structure of the evaluation” GSA must
    perform in awarding the IDIQ contracts. Oral Arg. Tr. at 43:3–5; see supra Discussion Section
    Where in the document can further discussion about the assertion be found?
    otra parte. Fernández v. San Juan Cement Co., Inc., 118 DPR 713,
    718-719 (1987). Nuestro más Alto Foro ha dispuesto que, la
    facultad de imponer honorarios de abogados es la mejor arma que

    22 Id.
    23 Andamios de PR v. Newport Bonding, 179 DPR 503, 520 (2010); Pérez Rodríguez
    v. López Rodríguez, supra; SLG González -Figueroa v. Pacheco Romero, supra;
    What case is cited with the reference number 118 DPR 713?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8791 10 5.6528 - - - - -
1.0 12 - 0.5926 0.5753 0.5457 0.4687 0.3455
1.7033 20 2.4543 - - - - -
2.0 24 - 0.6195 0.6066 0.5778 0.4998 0.3828
2.5275 30 1.7455 - - - - -
3.0 36 - 0.6292 0.6135 0.5765 0.5057 0.3928
3.3516 40 1.5499 - - - - -
3.7033 44 - 0.63 0.6138 0.5781 0.5109 0.3956
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.3.1
  • Transformers: 4.48.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
26
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AdamLucek/ModernBERT-embed-base-legal-MRL

Finetuned
(16)
this model

Dataset used to train AdamLucek/ModernBERT-embed-base-legal-MRL

Evaluation results