ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the AdamLucek/legal-rag-positives-synthetic dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/ModernBERT-embed-base-legal-MRL")
# Run inference
sentences = [
'contracting/contracting-assistance-programs/sba-mentor-protege-program (last visited Apr. 19, \n2023). \n5 \n \nprotégé must demonstrate that the added mentor-protégé relationship will not adversely affect the \ndevelopment of either protégé firm (e.g., the second firm may not be a competitor of the first \nfirm).” 13 C.F.R. § 125.9(b)(3).',
'What must the protégé demonstrate about the mentor-protégé relationship?',
'What discretion do district courts have regarding a defendant’s invocation of FOIA exemptions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5286 | 0.5162 | 0.4822 | 0.4158 | 0.3122 |
cosine_accuracy@3 | 0.5719 | 0.5487 | 0.5286 | 0.4436 | 0.3509 |
cosine_accuracy@5 | 0.6646 | 0.6414 | 0.5981 | 0.5363 | 0.4359 |
cosine_accuracy@10 | 0.7311 | 0.7172 | 0.6785 | 0.6105 | 0.4791 |
cosine_precision@1 | 0.5286 | 0.5162 | 0.4822 | 0.4158 | 0.3122 |
cosine_precision@3 | 0.5142 | 0.4982 | 0.4699 | 0.3993 | 0.3091 |
cosine_precision@5 | 0.3941 | 0.3808 | 0.3586 | 0.3128 | 0.2504 |
cosine_precision@10 | 0.2329 | 0.2272 | 0.2147 | 0.1924 | 0.1498 |
cosine_recall@1 | 0.1788 | 0.174 | 0.1627 | 0.1426 | 0.105 |
cosine_recall@3 | 0.4894 | 0.4735 | 0.4493 | 0.3836 | 0.2955 |
cosine_recall@5 | 0.6121 | 0.5911 | 0.5569 | 0.4878 | 0.3931 |
cosine_recall@10 | 0.7184 | 0.7023 | 0.6642 | 0.5963 | 0.4681 |
cosine_ndcg@10 | 0.63 | 0.6138 | 0.5781 | 0.5109 | 0.3956 |
cosine_mrr@10 | 0.5741 | 0.5593 | 0.5249 | 0.4573 | 0.3509 |
cosine_map@100 | 0.6186 | 0.6022 | 0.5698 | 0.503 | 0.3939 |
Training Details
AdamLucek/legal-rag-positives-synthetic
- Dataset: AdamLucek/legal-rag-positives-synthetic
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 15 tokens
- mean: 97.6 tokens
- max: 153 tokens
- min: 8 tokens
- mean: 16.68 tokens
- max: 41 tokens
- Samples:
positive anchor infrastructure security information,” the information at issue must, “if disclosed . . . reveal vulner-
abilities in Department of Defense critical infrastructure.” 10 U.S.C. § 130e(f). The closest the
Department comes is asserting that the information “individually or in the aggregate, would enableWhat type of information must reveal vulnerabilities if disclosed?
they have bid.” Oral Arg. Tr. at 42:18–20. Plaintiffs also assert that, should this Court require the
Polaris Solicitations to consider price at the IDIQ level, such an adjustment “adds a solicitation
requirement that would necessarily change the overall structure of the evaluation” GSA must
perform in awarding the IDIQ contracts. Oral Arg. Tr. at 43:3–5; see supra Discussion SectionWhere in the document can further discussion about the assertion be found?
otra parte. Fernández v. San Juan Cement Co., Inc., 118 DPR 713,
718-719 (1987). Nuestro más Alto Foro ha dispuesto que, la
facultad de imponer honorarios de abogados es la mejor arma que
22 Id.
23 Andamios de PR v. Newport Bonding, 179 DPR 503, 520 (2010); Pérez Rodríguez
v. López Rodríguez, supra; SLG González -Figueroa v. Pacheco Romero, supra;What case is cited with the reference number 118 DPR 713?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 5.6528 | - | - | - | - | - |
1.0 | 12 | - | 0.5926 | 0.5753 | 0.5457 | 0.4687 | 0.3455 |
1.7033 | 20 | 2.4543 | - | - | - | - | - |
2.0 | 24 | - | 0.6195 | 0.6066 | 0.5778 | 0.4998 | 0.3828 |
2.5275 | 30 | 1.7455 | - | - | - | - | - |
3.0 | 36 | - | 0.6292 | 0.6135 | 0.5765 | 0.5057 | 0.3928 |
3.3516 | 40 | 1.5499 | - | - | - | - | - |
3.7033 | 44 | - | 0.63 | 0.6138 | 0.5781 | 0.5109 | 0.3956 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AdamLucek/ModernBERT-embed-base-legal-MRL
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Dataset used to train AdamLucek/ModernBERT-embed-base-legal-MRL
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.529
- Cosine Accuracy@3 on dim 768self-reported0.572
- Cosine Accuracy@5 on dim 768self-reported0.665
- Cosine Accuracy@10 on dim 768self-reported0.731
- Cosine Precision@1 on dim 768self-reported0.529
- Cosine Precision@3 on dim 768self-reported0.514
- Cosine Precision@5 on dim 768self-reported0.394
- Cosine Precision@10 on dim 768self-reported0.233
- Cosine Recall@1 on dim 768self-reported0.179
- Cosine Recall@3 on dim 768self-reported0.489