Fine-tuned with QuicKB
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/modernbert-embed-quickb-video")
# Run inference
sentences = [
'What do the newly enacted laws prohibit hospitals from doing regarding sexual assault victims?',
'confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals treating sexual \nassault victims from directly billing the victims for the services, communicating with victims \nabout a bill, or referring overdue bills to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4) (West 2022). These recently enacted laws encourage victims to report',
'exclusion for committees “composed wholly of . . . permanent part-time . . . employees.” 5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why the Commission does not fall within this exclusion is \nthat its members are not “part-time” federal employees. Instead, they are “intermittent” \nemployees. EPIC points to a regulation stating that “[a]n intermittent work schedule is',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
cosine_accuracy@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 |
cosine_accuracy@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 |
cosine_accuracy@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 |
cosine_precision@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
cosine_precision@3 | 0.2313 | 0.2333 | 0.2292 | 0.2083 | 0.1625 |
cosine_precision@5 | 0.15 | 0.1462 | 0.145 | 0.1387 | 0.12 |
cosine_precision@10 | 0.0831 | 0.0825 | 0.0794 | 0.0775 | 0.0688 |
cosine_recall@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
cosine_recall@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 |
cosine_recall@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 |
cosine_recall@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 |
cosine_ndcg@10 | 0.6715 | 0.6608 | 0.6225 | 0.5932 | 0.4854 |
cosine_mrr@10 | 0.6211 | 0.6085 | 0.5669 | 0.5349 | 0.4218 |
cosine_map@100 | 0.6262 | 0.6146 | 0.5741 | 0.5418 | 0.4327 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,440 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 15.14 tokens
- max: 29 tokens
- min: 57 tokens
- mean: 97.82 tokens
- max: 161 tokens
- Samples:
anchor positive What must the advisory committee make available for public inspection?
advisory committee shall be available for public inspection and copying . . . until the advisory
committee ceases to exist.” Id. § 10(b). Unlike FOIA, this provision looks forward. It requires
committees to take affirmative steps to make their records are public, even absent a request.
FACA’s definition of “advisory committee” has four parts. First, it includes “anyWhat did the landlords fail to alert the court about?
court documents containing fake citations, we conclude that
imposing monetary sanctions or dismissing this appeal would be
disproportionate to Al-Hamim’s violation of the Appellate Rules.
23
Further, in their answer brief, the landlords failed to alert this court
to the hallucinations in Al-Hamim’s opening brief and did not
request an award of attorney fees against Al-Hamim. Under theOn what date was the motion served on the plaintiff’s counsel?
also alleged (1) that plaintiff violated section 2-401(e) and (2) that she lacked good cause to
file anonymously because she signed an affidavit in her own name in another case with similar
allegations. The April 13 motion contains a “Certificate of Service” stating that it was served
on plaintiff’s counsel by e-mail on April 13. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 3 | 0.6493 | 0.6372 | 0.5987 | 0.5536 | 0.4520 |
2.0 | 6 | 0.6685 | 0.6514 | 0.6208 | 0.5916 | 0.4859 |
2.7111 | 8 | 0.6715 | 0.6608 | 0.6225 | 0.5932 | 0.4854 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for AdamLucek/modernbert-embed-quickb-video
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.519
- Cosine Accuracy@3 on dim 768self-reported0.694
- Cosine Accuracy@5 on dim 768self-reported0.750
- Cosine Accuracy@10 on dim 768self-reported0.831
- Cosine Precision@1 on dim 768self-reported0.519
- Cosine Precision@3 on dim 768self-reported0.231
- Cosine Precision@5 on dim 768self-reported0.150
- Cosine Precision@10 on dim 768self-reported0.083
- Cosine Recall@1 on dim 768self-reported0.519
- Cosine Recall@3 on dim 768self-reported0.694