AdamLucek commited on
Commit
1aaa6f3
·
verified ·
1 Parent(s): 8baf60c

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:1440
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: nomic-ai/modernbert-embed-base
14
+ widget:
15
+ - source_sentence: What section of the Code of Federal Regulations is quoted?
16
+ sentences:
17
+ - "and other legal relations of any interested party seeking such declaration.”\
18
+ \ 28 U.S.C. § 2201(a). \nThis statute “is not an independent source of federal\
19
+ \ jurisdiction”; rather, “the availability of \nsuch relief presupposes the existence\
20
+ \ of a judicially remediable right.” Schilling v. Rogers, 363 \nU.S. 666, 677\
21
+ \ (1960). The Court independently has jurisdiction here under the mandamus"
22
+ - "appropriate only when the nature of the work is sporadic and unpredictable so\
23
+ \ that a tour of duty \ncannot be regularly scheduled in advance.” Pl.’s Mem.\
24
+ \ at 18 (quoting 5 C.F.R. § 340.403(a)). \nThis regulation explicitly distinguishes\
25
+ \ “intermittent” status from “part-time” status, as it says \nthat “[w]hen an\
26
+ \ agency is able to schedule work in advance on a regular basis, it has an"
27
+ - "its discretion, a reviewing court looks to the trial court’s “stated justification\
28
+ \ for refusing to \nmodify” the order. Skolnick, 191 Ill. 2d at 226. \n \n \n\
29
+ In the case at bar, the one-sentence April 25 order did not provide any reasons\
30
+ \ at all. The \nlosing party drafted the order without any stated reasons, although\
31
+ \ a lack of stated reasons may"
32
+ - source_sentence: Which office was determined to be an agency in the Soucie case?
33
+ sentences:
34
+ - "inquiry”); Doe v. Skyline Automobiles, Inc., 375 F. Supp. 3d 401, 405-06 (S.D.N.Y.\
35
+ \ 2019) \n(“other factors must be taken into consideration and analyzed in comparison\
36
+ \ to the public’s \ninterest and the interests of the opposing parties”). \n \n\
37
+ \ \nIllinois has taken steps to protect individuals’ private information. Examples\
38
+ \ include the"
39
+ - "Aside from whether the Department’s “approach to artificial intelligence development\
40
+ \ and \nimplementation” should be considered “critical infrastructure,” the Department’s\
41
+ \ affidavit is \n \n \n5\ndeficient in showing that its withholdings qualify as\
42
+ \ “critical infrastructure security information” \nin other ways. For example,\
43
+ \ the affidavit fails to explain how the disclosure of the withheld infor-"
44
+ - "whether an entity wields “substantial independent authority”: investigative\
45
+ \ power and authority \nto make final and binding decisions. \nConsider first\
46
+ \ Soucie. The Circuit held that the Office of Science and Technology \n(“OST”)\
47
+ \ was an agency because, beyond advising the President, it had the “independent\
48
+ \ function"
49
+ - source_sentence: What is the appellant's burden on appeal?
50
+ sentences:
51
+ - "Defs.’ Reply at 7–8, 8 n.1. It cites Judicial Watch, Inc. v. Department of Energy,\
52
+ \ 412 F.3d 125 \n(D.C. Cir. 2005), which dealt with the records of employees that\
53
+ \ the Department of Energy \n(“DOE”) had detailed to the National Energy Policy\
54
+ \ Development Group (“NEPDG”). Id. at \n132. The Government quotes the court’s\
55
+ \ statement that “the records those employees created or"
56
+ - "records available for inspection and copying is a violation of 5 U.S.C. app.\
57
+ \ 2 § 10(b) and \nconstitutes a failure to perform a duty owed to EPIC within\
58
+ \ the meaning of 28 U.S.C. § 1361.” \nId. . Both counts seek “a writ of mandamus”\
59
+ \ compelling the Commission and its officers to \ncomply with FACA. Id. , 139.\
60
+ \ These counts make clear that EPIC seeks mandamus relief"
61
+ - "counsel now cannot fairly contend that the trial court did not consider all the\
62
+ \ facts, especially \nwhen [d]efendant’s counsel offers no court transcript to\
63
+ \ show otherwise.” On appeal, it is \ngenerally the appellant’s burden to provide\
64
+ \ the reviewing court with a sufficient record to \nestablish the error that he\
65
+ \ complains of. Webster v. Hartman, 195 Ill. 2d 426, 436 (2001). “[A]"
66
+ - source_sentence: What does the text refer to as a 'statutory distinction'?
67
+ sentences:
68
+ - "inconsistency in deeming the same entity an advisory committee and an agency.”\
69
+ \ Defs.’ Reply \nat 8. The problem, according to the Government, is that FACA\
70
+ \ generally requires disclosure of \nrecords, yet Exemption 5 would shield a portion\
71
+ \ of these records from public view, which would \nundermine FACA’s “purpose.”\
72
+ \ Id. at 8–9. Gates, Wolfe, and the 1988 OLC opinion echo this"
73
+ - "agencies are operating arms of government characterized by ‘substantial independent\
74
+ \ authority in \nthe exercise of specific functions.’” Disclosure of Advisory\
75
+ \ Comm. Deliberative Materials, 12 \nOp. O.L.C. 73, 81 (1988). This “statutory\
76
+ \ distinction,” it concludes, signifies that “advisory \ncommittees are not agencies.”\
77
+ \ Id."
78
+ - "the Hon. Israel A. Desierto, Judge, presiding. \n \n \nJudgment \nAffirmed. \n\
79
+ \ \nCounsel on \nAppeal \n \nVictor P. Henderson and Colin Quinn Commito, of Henderson\
80
+ \ Parks, \nLLC, of Chicago, for appellant. \n \nTamara N. Holder, Law Firm of\
81
+ \ Tamara N. Holder LLC, of Chicago, \nfor appellee. \n \n \n \nPanel \n \nPRESIDING\
82
+ \ JUSTICE ODEN JOHNSON delivered the judgment of \nthe court, with opinion."
83
+ - source_sentence: What do the newly enacted laws prohibit hospitals from doing regarding
84
+ sexual assault victims?
85
+ sentences:
86
+ - "exclusion for committees “composed wholly of . . . permanent part-time . . .\
87
+ \ employees.” 5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why\
88
+ \ the Commission does not fall within this exclusion is \nthat its members are\
89
+ \ not “part-time” federal employees. Instead, they are “intermittent” \nemployees.\
90
+ \ EPIC points to a regulation stating that “[a]n intermittent work schedule is"
91
+ - "committee, board, commission, council, conference, panel, task force, or other\
92
+ \ similar group, or \nany subcommittee or other subgroup thereof.” Id. § 3(2).\
93
+ \ Second, it must be “established by \nstatute or reorganization plan,” “established\
94
+ \ or utilized by the President,” or “established or \nutilized by one or more\
95
+ \ agencies.” Id. Third, it must be “established” or “utilized” “in the"
96
+ - "confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals\
97
+ \ treating sexual \nassault victims from directly billing the victims for the\
98
+ \ services, communicating with victims \nabout a bill, or referring overdue bills\
99
+ \ to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4)\
100
+ \ (West 2022). These recently enacted laws encourage victims to report"
101
+ pipeline_tag: sentence-similarity
102
+ library_name: sentence-transformers
103
+ metrics:
104
+ - cosine_accuracy@1
105
+ - cosine_accuracy@3
106
+ - cosine_accuracy@5
107
+ - cosine_accuracy@10
108
+ - cosine_precision@1
109
+ - cosine_precision@3
110
+ - cosine_precision@5
111
+ - cosine_precision@10
112
+ - cosine_recall@1
113
+ - cosine_recall@3
114
+ - cosine_recall@5
115
+ - cosine_recall@10
116
+ - cosine_ndcg@10
117
+ - cosine_mrr@10
118
+ - cosine_map@100
119
+ model-index:
120
+ - name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
121
+ results:
122
+ - task:
123
+ type: information-retrieval
124
+ name: Information Retrieval
125
+ dataset:
126
+ name: dim 768
127
+ type: dim_768
128
+ metrics:
129
+ - type: cosine_accuracy@1
130
+ value: 0.51875
131
+ name: Cosine Accuracy@1
132
+ - type: cosine_accuracy@3
133
+ value: 0.69375
134
+ name: Cosine Accuracy@3
135
+ - type: cosine_accuracy@5
136
+ value: 0.75
137
+ name: Cosine Accuracy@5
138
+ - type: cosine_accuracy@10
139
+ value: 0.83125
140
+ name: Cosine Accuracy@10
141
+ - type: cosine_precision@1
142
+ value: 0.51875
143
+ name: Cosine Precision@1
144
+ - type: cosine_precision@3
145
+ value: 0.23125
146
+ name: Cosine Precision@3
147
+ - type: cosine_precision@5
148
+ value: 0.14999999999999997
149
+ name: Cosine Precision@5
150
+ - type: cosine_precision@10
151
+ value: 0.08312499999999999
152
+ name: Cosine Precision@10
153
+ - type: cosine_recall@1
154
+ value: 0.51875
155
+ name: Cosine Recall@1
156
+ - type: cosine_recall@3
157
+ value: 0.69375
158
+ name: Cosine Recall@3
159
+ - type: cosine_recall@5
160
+ value: 0.75
161
+ name: Cosine Recall@5
162
+ - type: cosine_recall@10
163
+ value: 0.83125
164
+ name: Cosine Recall@10
165
+ - type: cosine_ndcg@10
166
+ value: 0.671534966140965
167
+ name: Cosine Ndcg@10
168
+ - type: cosine_mrr@10
169
+ value: 0.6211160714285715
170
+ name: Cosine Mrr@10
171
+ - type: cosine_map@100
172
+ value: 0.6261949467277568
173
+ name: Cosine Map@100
174
+ - task:
175
+ type: information-retrieval
176
+ name: Information Retrieval
177
+ dataset:
178
+ name: dim 512
179
+ type: dim_512
180
+ metrics:
181
+ - type: cosine_accuracy@1
182
+ value: 0.49375
183
+ name: Cosine Accuracy@1
184
+ - type: cosine_accuracy@3
185
+ value: 0.7
186
+ name: Cosine Accuracy@3
187
+ - type: cosine_accuracy@5
188
+ value: 0.73125
189
+ name: Cosine Accuracy@5
190
+ - type: cosine_accuracy@10
191
+ value: 0.825
192
+ name: Cosine Accuracy@10
193
+ - type: cosine_precision@1
194
+ value: 0.49375
195
+ name: Cosine Precision@1
196
+ - type: cosine_precision@3
197
+ value: 0.2333333333333333
198
+ name: Cosine Precision@3
199
+ - type: cosine_precision@5
200
+ value: 0.14625
201
+ name: Cosine Precision@5
202
+ - type: cosine_precision@10
203
+ value: 0.08249999999999999
204
+ name: Cosine Precision@10
205
+ - type: cosine_recall@1
206
+ value: 0.49375
207
+ name: Cosine Recall@1
208
+ - type: cosine_recall@3
209
+ value: 0.7
210
+ name: Cosine Recall@3
211
+ - type: cosine_recall@5
212
+ value: 0.73125
213
+ name: Cosine Recall@5
214
+ - type: cosine_recall@10
215
+ value: 0.825
216
+ name: Cosine Recall@10
217
+ - type: cosine_ndcg@10
218
+ value: 0.6607544642083831
219
+ name: Cosine Ndcg@10
220
+ - type: cosine_mrr@10
221
+ value: 0.6085367063492064
222
+ name: Cosine Mrr@10
223
+ - type: cosine_map@100
224
+ value: 0.6146313607229802
225
+ name: Cosine Map@100
226
+ - task:
227
+ type: information-retrieval
228
+ name: Information Retrieval
229
+ dataset:
230
+ name: dim 256
231
+ type: dim_256
232
+ metrics:
233
+ - type: cosine_accuracy@1
234
+ value: 0.4375
235
+ name: Cosine Accuracy@1
236
+ - type: cosine_accuracy@3
237
+ value: 0.6875
238
+ name: Cosine Accuracy@3
239
+ - type: cosine_accuracy@5
240
+ value: 0.725
241
+ name: Cosine Accuracy@5
242
+ - type: cosine_accuracy@10
243
+ value: 0.79375
244
+ name: Cosine Accuracy@10
245
+ - type: cosine_precision@1
246
+ value: 0.4375
247
+ name: Cosine Precision@1
248
+ - type: cosine_precision@3
249
+ value: 0.22916666666666666
250
+ name: Cosine Precision@3
251
+ - type: cosine_precision@5
252
+ value: 0.145
253
+ name: Cosine Precision@5
254
+ - type: cosine_precision@10
255
+ value: 0.079375
256
+ name: Cosine Precision@10
257
+ - type: cosine_recall@1
258
+ value: 0.4375
259
+ name: Cosine Recall@1
260
+ - type: cosine_recall@3
261
+ value: 0.6875
262
+ name: Cosine Recall@3
263
+ - type: cosine_recall@5
264
+ value: 0.725
265
+ name: Cosine Recall@5
266
+ - type: cosine_recall@10
267
+ value: 0.79375
268
+ name: Cosine Recall@10
269
+ - type: cosine_ndcg@10
270
+ value: 0.6224957341997419
271
+ name: Cosine Ndcg@10
272
+ - type: cosine_mrr@10
273
+ value: 0.566939484126984
274
+ name: Cosine Mrr@10
275
+ - type: cosine_map@100
276
+ value: 0.5740997074969412
277
+ name: Cosine Map@100
278
+ - task:
279
+ type: information-retrieval
280
+ name: Information Retrieval
281
+ dataset:
282
+ name: dim 128
283
+ type: dim_128
284
+ metrics:
285
+ - type: cosine_accuracy@1
286
+ value: 0.40625
287
+ name: Cosine Accuracy@1
288
+ - type: cosine_accuracy@3
289
+ value: 0.625
290
+ name: Cosine Accuracy@3
291
+ - type: cosine_accuracy@5
292
+ value: 0.69375
293
+ name: Cosine Accuracy@5
294
+ - type: cosine_accuracy@10
295
+ value: 0.775
296
+ name: Cosine Accuracy@10
297
+ - type: cosine_precision@1
298
+ value: 0.40625
299
+ name: Cosine Precision@1
300
+ - type: cosine_precision@3
301
+ value: 0.20833333333333331
302
+ name: Cosine Precision@3
303
+ - type: cosine_precision@5
304
+ value: 0.13874999999999998
305
+ name: Cosine Precision@5
306
+ - type: cosine_precision@10
307
+ value: 0.07749999999999999
308
+ name: Cosine Precision@10
309
+ - type: cosine_recall@1
310
+ value: 0.40625
311
+ name: Cosine Recall@1
312
+ - type: cosine_recall@3
313
+ value: 0.625
314
+ name: Cosine Recall@3
315
+ - type: cosine_recall@5
316
+ value: 0.69375
317
+ name: Cosine Recall@5
318
+ - type: cosine_recall@10
319
+ value: 0.775
320
+ name: Cosine Recall@10
321
+ - type: cosine_ndcg@10
322
+ value: 0.5931742895464828
323
+ name: Cosine Ndcg@10
324
+ - type: cosine_mrr@10
325
+ value: 0.5348859126984128
326
+ name: Cosine Mrr@10
327
+ - type: cosine_map@100
328
+ value: 0.5417826806767716
329
+ name: Cosine Map@100
330
+ - task:
331
+ type: information-retrieval
332
+ name: Information Retrieval
333
+ dataset:
334
+ name: dim 64
335
+ type: dim_64
336
+ metrics:
337
+ - type: cosine_accuracy@1
338
+ value: 0.30625
339
+ name: Cosine Accuracy@1
340
+ - type: cosine_accuracy@3
341
+ value: 0.4875
342
+ name: Cosine Accuracy@3
343
+ - type: cosine_accuracy@5
344
+ value: 0.6
345
+ name: Cosine Accuracy@5
346
+ - type: cosine_accuracy@10
347
+ value: 0.6875
348
+ name: Cosine Accuracy@10
349
+ - type: cosine_precision@1
350
+ value: 0.30625
351
+ name: Cosine Precision@1
352
+ - type: cosine_precision@3
353
+ value: 0.16249999999999998
354
+ name: Cosine Precision@3
355
+ - type: cosine_precision@5
356
+ value: 0.12
357
+ name: Cosine Precision@5
358
+ - type: cosine_precision@10
359
+ value: 0.06875
360
+ name: Cosine Precision@10
361
+ - type: cosine_recall@1
362
+ value: 0.30625
363
+ name: Cosine Recall@1
364
+ - type: cosine_recall@3
365
+ value: 0.4875
366
+ name: Cosine Recall@3
367
+ - type: cosine_recall@5
368
+ value: 0.6
369
+ name: Cosine Recall@5
370
+ - type: cosine_recall@10
371
+ value: 0.6875
372
+ name: Cosine Recall@10
373
+ - type: cosine_ndcg@10
374
+ value: 0.4854299754851493
375
+ name: Cosine Ndcg@10
376
+ - type: cosine_mrr@10
377
+ value: 0.42175347222222237
378
+ name: Cosine Mrr@10
379
+ - type: cosine_map@100
380
+ value: 0.4326739799760461
381
+ name: Cosine Map@100
382
+ ---
383
+
384
+ # Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
385
+
386
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
387
+
388
+ ## Model Details
389
+
390
+ ### Model Description
391
+ - **Model Type:** Sentence Transformer
392
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
393
+ - **Maximum Sequence Length:** 1024 tokens
394
+ - **Output Dimensionality:** 768 dimensions
395
+ - **Similarity Function:** Cosine Similarity
396
+ <!-- - **Training Dataset:** Unknown -->
397
+ - **Language:** en
398
+ - **License:** apache-2.0
399
+
400
+ ### Model Sources
401
+
402
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
403
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
404
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
405
+
406
+ ### Full Model Architecture
407
+
408
+ ```
409
+ SentenceTransformer(
410
+ (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
411
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
412
+ (2): Normalize()
413
+ )
414
+ ```
415
+
416
+ ## Usage
417
+
418
+ ### Direct Usage (Sentence Transformers)
419
+
420
+ First install the Sentence Transformers library:
421
+
422
+ ```bash
423
+ pip install -U sentence-transformers
424
+ ```
425
+
426
+ Then you can load this model and run inference.
427
+ ```python
428
+ from sentence_transformers import SentenceTransformer
429
+
430
+ # Download from the 🤗 Hub
431
+ model = SentenceTransformer("AdamLucek/modernbert-embed-quickb-video")
432
+ # Run inference
433
+ sentences = [
434
+ 'What do the newly enacted laws prohibit hospitals from doing regarding sexual assault victims?',
435
+ 'confidential advisors (735 ILCS 5/8-804(c) (West 2022)) and prohibit hospitals treating sexual \nassault victims from directly billing the victims for the services, communicating with victims \nabout a bill, or referring overdue bills to collection agencies or credit reporting agencies. 410 \nILCS 70/7.5(a)(1)-(4) (West 2022). These recently enacted laws encourage victims to report',
436
+ 'exclusion for committees “composed wholly of . . . permanent part-time . . . employees.” 5 \nU.S.C. app. 2 § 3(2). \n32 \nA second, independent reason why the Commission does not fall within this exclusion is \nthat its members are not “part-time” federal employees. Instead, they are “intermittent” \nemployees. EPIC points to a regulation stating that “[a]n intermittent work schedule is',
437
+ ]
438
+ embeddings = model.encode(sentences)
439
+ print(embeddings.shape)
440
+ # [3, 768]
441
+
442
+ # Get the similarity scores for the embeddings
443
+ similarities = model.similarity(embeddings, embeddings)
444
+ print(similarities.shape)
445
+ # [3, 3]
446
+ ```
447
+
448
+ <!--
449
+ ### Direct Usage (Transformers)
450
+
451
+ <details><summary>Click to see the direct usage in Transformers</summary>
452
+
453
+ </details>
454
+ -->
455
+
456
+ <!--
457
+ ### Downstream Usage (Sentence Transformers)
458
+
459
+ You can finetune this model on your own dataset.
460
+
461
+ <details><summary>Click to expand</summary>
462
+
463
+ </details>
464
+ -->
465
+
466
+ <!--
467
+ ### Out-of-Scope Use
468
+
469
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
470
+ -->
471
+
472
+ ## Evaluation
473
+
474
+ ### Metrics
475
+
476
+ #### Information Retrieval
477
+
478
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
479
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
480
+
481
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
482
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
483
+ | cosine_accuracy@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
484
+ | cosine_accuracy@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 |
485
+ | cosine_accuracy@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 |
486
+ | cosine_accuracy@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 |
487
+ | cosine_precision@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
488
+ | cosine_precision@3 | 0.2313 | 0.2333 | 0.2292 | 0.2083 | 0.1625 |
489
+ | cosine_precision@5 | 0.15 | 0.1462 | 0.145 | 0.1387 | 0.12 |
490
+ | cosine_precision@10 | 0.0831 | 0.0825 | 0.0794 | 0.0775 | 0.0688 |
491
+ | cosine_recall@1 | 0.5188 | 0.4938 | 0.4375 | 0.4062 | 0.3063 |
492
+ | cosine_recall@3 | 0.6937 | 0.7 | 0.6875 | 0.625 | 0.4875 |
493
+ | cosine_recall@5 | 0.75 | 0.7312 | 0.725 | 0.6937 | 0.6 |
494
+ | cosine_recall@10 | 0.8313 | 0.825 | 0.7937 | 0.775 | 0.6875 |
495
+ | **cosine_ndcg@10** | **0.6715** | **0.6608** | **0.6225** | **0.5932** | **0.4854** |
496
+ | cosine_mrr@10 | 0.6211 | 0.6085 | 0.5669 | 0.5349 | 0.4218 |
497
+ | cosine_map@100 | 0.6262 | 0.6146 | 0.5741 | 0.5418 | 0.4327 |
498
+
499
+ <!--
500
+ ## Bias, Risks and Limitations
501
+
502
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
503
+ -->
504
+
505
+ <!--
506
+ ### Recommendations
507
+
508
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
509
+ -->
510
+
511
+ ## Training Details
512
+
513
+ ### Training Dataset
514
+
515
+ #### Unnamed Dataset
516
+
517
+ * Size: 1,440 training samples
518
+ * Columns: <code>anchor</code> and <code>positive</code>
519
+ * Approximate statistics based on the first 1000 samples:
520
+ | | anchor | positive |
521
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
522
+ | type | string | string |
523
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.14 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 57 tokens</li><li>mean: 97.82 tokens</li><li>max: 161 tokens</li></ul> |
524
+ * Samples:
525
+ | anchor | positive |
526
+ |:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
527
+ | <code>What must the advisory committee make available for public inspection?</code> | <code>advisory committee shall be available for public inspection and copying . . . until the advisory <br>committee ceases to exist.” Id. § 10(b). Unlike FOIA, this provision looks forward. It requires <br>committees to take affirmative steps to make their records are public, even absent a request. <br>FACA’s definition of “advisory committee” has four parts. First, it includes “any</code> |
528
+ | <code>What did the landlords fail to alert the court about?</code> | <code>court documents containing fake citations, we conclude that <br>imposing monetary sanctions or dismissing this appeal would be <br>disproportionate to Al-Hamim’s violation of the Appellate Rules. <br> <br>23 <br>Further, in their answer brief, the landlords failed to alert this court <br>to the hallucinations in Al-Hamim’s opening brief and did not <br>request an award of attorney fees against Al-Hamim. Under the</code> |
529
+ | <code>On what date was the motion served on the plaintiff’s counsel?</code> | <code>also alleged (1) that plaintiff violated section 2-401(e) and (2) that she lacked good cause to <br>file anonymously because she signed an affidavit in her own name in another case with similar <br>allegations. The April 13 motion contains a “Certificate of Service” stating that it was served <br>on plaintiff’s counsel by e-mail on April 13.</code> |
530
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
531
+ ```json
532
+ {
533
+ "loss": "MultipleNegativesRankingLoss",
534
+ "matryoshka_dims": [
535
+ 768,
536
+ 512,
537
+ 256,
538
+ 128,
539
+ 64
540
+ ],
541
+ "matryoshka_weights": [
542
+ 1,
543
+ 1,
544
+ 1,
545
+ 1,
546
+ 1
547
+ ],
548
+ "n_dims_per_step": -1
549
+ }
550
+ ```
551
+
552
+ ### Training Hyperparameters
553
+ #### Non-Default Hyperparameters
554
+
555
+ - `eval_strategy`: epoch
556
+ - `per_device_train_batch_size`: 32
557
+ - `gradient_accumulation_steps`: 16
558
+ - `learning_rate`: 2e-05
559
+ - `num_train_epochs`: 4
560
+ - `lr_scheduler_type`: cosine
561
+ - `warmup_ratio`: 0.1
562
+ - `bf16`: True
563
+ - `tf32`: True
564
+ - `load_best_model_at_end`: True
565
+ - `optim`: adamw_torch_fused
566
+ - `batch_sampler`: no_duplicates
567
+
568
+ #### All Hyperparameters
569
+ <details><summary>Click to expand</summary>
570
+
571
+ - `overwrite_output_dir`: False
572
+ - `do_predict`: False
573
+ - `eval_strategy`: epoch
574
+ - `prediction_loss_only`: True
575
+ - `per_device_train_batch_size`: 32
576
+ - `per_device_eval_batch_size`: 8
577
+ - `per_gpu_train_batch_size`: None
578
+ - `per_gpu_eval_batch_size`: None
579
+ - `gradient_accumulation_steps`: 16
580
+ - `eval_accumulation_steps`: None
581
+ - `torch_empty_cache_steps`: None
582
+ - `learning_rate`: 2e-05
583
+ - `weight_decay`: 0.0
584
+ - `adam_beta1`: 0.9
585
+ - `adam_beta2`: 0.999
586
+ - `adam_epsilon`: 1e-08
587
+ - `max_grad_norm`: 1.0
588
+ - `num_train_epochs`: 4
589
+ - `max_steps`: -1
590
+ - `lr_scheduler_type`: cosine
591
+ - `lr_scheduler_kwargs`: {}
592
+ - `warmup_ratio`: 0.1
593
+ - `warmup_steps`: 0
594
+ - `log_level`: passive
595
+ - `log_level_replica`: warning
596
+ - `log_on_each_node`: True
597
+ - `logging_nan_inf_filter`: True
598
+ - `save_safetensors`: True
599
+ - `save_on_each_node`: False
600
+ - `save_only_model`: False
601
+ - `restore_callback_states_from_checkpoint`: False
602
+ - `no_cuda`: False
603
+ - `use_cpu`: False
604
+ - `use_mps_device`: False
605
+ - `seed`: 42
606
+ - `data_seed`: None
607
+ - `jit_mode_eval`: False
608
+ - `use_ipex`: False
609
+ - `bf16`: True
610
+ - `fp16`: False
611
+ - `fp16_opt_level`: O1
612
+ - `half_precision_backend`: auto
613
+ - `bf16_full_eval`: False
614
+ - `fp16_full_eval`: False
615
+ - `tf32`: True
616
+ - `local_rank`: 0
617
+ - `ddp_backend`: None
618
+ - `tpu_num_cores`: None
619
+ - `tpu_metrics_debug`: False
620
+ - `debug`: []
621
+ - `dataloader_drop_last`: False
622
+ - `dataloader_num_workers`: 0
623
+ - `dataloader_prefetch_factor`: None
624
+ - `past_index`: -1
625
+ - `disable_tqdm`: False
626
+ - `remove_unused_columns`: True
627
+ - `label_names`: None
628
+ - `load_best_model_at_end`: True
629
+ - `ignore_data_skip`: False
630
+ - `fsdp`: []
631
+ - `fsdp_min_num_params`: 0
632
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
633
+ - `fsdp_transformer_layer_cls_to_wrap`: None
634
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
635
+ - `deepspeed`: None
636
+ - `label_smoothing_factor`: 0.0
637
+ - `optim`: adamw_torch_fused
638
+ - `optim_args`: None
639
+ - `adafactor`: False
640
+ - `group_by_length`: False
641
+ - `length_column_name`: length
642
+ - `ddp_find_unused_parameters`: None
643
+ - `ddp_bucket_cap_mb`: None
644
+ - `ddp_broadcast_buffers`: False
645
+ - `dataloader_pin_memory`: True
646
+ - `dataloader_persistent_workers`: False
647
+ - `skip_memory_metrics`: True
648
+ - `use_legacy_prediction_loop`: False
649
+ - `push_to_hub`: False
650
+ - `resume_from_checkpoint`: None
651
+ - `hub_model_id`: None
652
+ - `hub_strategy`: every_save
653
+ - `hub_private_repo`: None
654
+ - `hub_always_push`: False
655
+ - `gradient_checkpointing`: False
656
+ - `gradient_checkpointing_kwargs`: None
657
+ - `include_inputs_for_metrics`: False
658
+ - `include_for_metrics`: []
659
+ - `eval_do_concat_batches`: True
660
+ - `fp16_backend`: auto
661
+ - `push_to_hub_model_id`: None
662
+ - `push_to_hub_organization`: None
663
+ - `mp_parameters`:
664
+ - `auto_find_batch_size`: False
665
+ - `full_determinism`: False
666
+ - `torchdynamo`: None
667
+ - `ray_scope`: last
668
+ - `ddp_timeout`: 1800
669
+ - `torch_compile`: False
670
+ - `torch_compile_backend`: None
671
+ - `torch_compile_mode`: None
672
+ - `dispatch_batches`: None
673
+ - `split_batches`: None
674
+ - `include_tokens_per_second`: False
675
+ - `include_num_input_tokens_seen`: False
676
+ - `neftune_noise_alpha`: None
677
+ - `optim_target_modules`: None
678
+ - `batch_eval_metrics`: False
679
+ - `eval_on_start`: False
680
+ - `use_liger_kernel`: False
681
+ - `eval_use_gather_object`: False
682
+ - `average_tokens_across_devices`: False
683
+ - `prompts`: None
684
+ - `batch_sampler`: no_duplicates
685
+ - `multi_dataset_batch_sampler`: proportional
686
+
687
+ </details>
688
+
689
+ ### Training Logs
690
+ | Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
691
+ |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
692
+ | 1.0 | 3 | 0.6493 | 0.6372 | 0.5987 | 0.5536 | 0.4520 |
693
+ | 2.0 | 6 | 0.6685 | 0.6514 | 0.6208 | 0.5916 | 0.4859 |
694
+ | **2.7111** | **8** | **0.6715** | **0.6608** | **0.6225** | **0.5932** | **0.4854** |
695
+
696
+ * The bold row denotes the saved checkpoint.
697
+
698
+ ### Framework Versions
699
+ - Python: 3.10.12
700
+ - Sentence Transformers: 3.4.0
701
+ - Transformers: 4.48.1
702
+ - PyTorch: 2.5.1+cu124
703
+ - Accelerate: 1.3.0
704
+ - Datasets: 3.2.0
705
+ - Tokenizers: 0.21.0
706
+
707
+ ## Citation
708
+
709
+ ### BibTeX
710
+
711
+ #### Sentence Transformers
712
+ ```bibtex
713
+ @inproceedings{reimers-2019-sentence-bert,
714
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
715
+ author = "Reimers, Nils and Gurevych, Iryna",
716
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
717
+ month = "11",
718
+ year = "2019",
719
+ publisher = "Association for Computational Linguistics",
720
+ url = "https://arxiv.org/abs/1908.10084",
721
+ }
722
+ ```
723
+
724
+ #### MatryoshkaLoss
725
+ ```bibtex
726
+ @misc{kusupati2024matryoshka,
727
+ title={Matryoshka Representation Learning},
728
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
729
+ year={2024},
730
+ eprint={2205.13147},
731
+ archivePrefix={arXiv},
732
+ primaryClass={cs.LG}
733
+ }
734
+ ```
735
+
736
+ #### MultipleNegativesRankingLoss
737
+ ```bibtex
738
+ @misc{henderson2017efficient,
739
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
740
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
741
+ year={2017},
742
+ eprint={1705.00652},
743
+ archivePrefix={arXiv},
744
+ primaryClass={cs.CL}
745
+ }
746
+ ```
747
+
748
+ <!--
749
+ ## Glossary
750
+
751
+ *Clearly define terms in order to be accessible across audiences.*
752
+ -->
753
+
754
+ <!--
755
+ ## Model Card Authors
756
+
757
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
758
+ -->
759
+
760
+ <!--
761
+ ## Model Card Contact
762
+
763
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
764
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/modernbert-embed-base",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": true,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.48.1",
46
+ "vocab_size": 50368
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.0",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b2dd1eebc806725922f178d29623e6284c75e0fbbdee62885e223046196e5d
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 1024,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }