bert-base-multilingual-cased-finetuned-yiddish-experiment-1

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4022

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
6.9585 0.4717 100 2.0347
1.7233 0.9434 200 1.5785
1.4538 1.4151 300 1.5119
1.3844 1.8868 400 1.4678
1.3024 2.3585 500 1.4263
1.2709 2.8302 600 1.4057
1.2155 3.3019 700 1.4144
1.2136 3.7736 800 1.4022
1.151 4.2453 900 1.4880
1.1371 4.7170 1000 1.4477
1.1091 5.1887 1100 1.4028
1.0638 5.6604 1200 1.4788
1.0468 6.1321 1300 1.4812
1.0122 6.6038 1400 1.4641
1.0158 7.0755 1500 1.5584
0.9775 7.5472 1600 1.5608
0.9455 8.0189 1700 1.6017
0.929 8.4906 1800 1.5681
0.9406 8.9623 1900 1.5814
0.9066 9.4340 2000 1.6071
0.9317 9.9057 2100 1.5979

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
157
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Addaci/bert-base-multilingual-cased-finetuned-yiddish-experiment-1

Finetuned
(626)
this model