bert-base-multilingual-cased-finetuned-yiddish-experiment-2
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
9.1219 | 0.4728 | 100 | 1.3974 |
1.0378 | 0.9456 | 200 | 0.8499 |
0.773 | 1.4161 | 300 | 0.7918 |
0.729 | 1.8889 | 400 | 0.7863 |
0.6948 | 2.3593 | 500 | 0.7451 |
0.6802 | 2.8322 | 600 | 0.7354 |
0.6525 | 3.3026 | 700 | 0.7210 |
0.6603 | 3.7754 | 800 | 0.7329 |
0.6293 | 4.2459 | 900 | 0.7321 |
0.6292 | 4.7187 | 1000 | 0.7441 |
0.6155 | 5.1891 | 1100 | 0.7107 |
0.6025 | 5.6619 | 1200 | 0.7421 |
0.5976 | 6.1324 | 1300 | 0.7268 |
0.5855 | 6.6052 | 1400 | 0.7327 |
0.5873 | 7.0757 | 1500 | 0.7172 |
0.5826 | 7.5485 | 1600 | 0.7205 |
0.5594 | 8.0189 | 1700 | 0.7591 |
0.5671 | 8.4917 | 1800 | 0.7320 |
0.569 | 8.9645 | 1900 | 0.7419 |
0.5558 | 9.4350 | 2000 | 0.7290 |
0.5696 | 9.9078 | 2100 | 0.7328 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Addaci/bert-base-multilingual-cased-finetuned-yiddish-experiment-2
Base model
google-bert/bert-base-multilingual-cased