Uploaded model

  • Developed by: AdrienB134
  • License: apache-2.0
  • Finetuned from model : unsloth/mistral-7b-v0.3

This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.

How to use

from unsloth import FastLanguageModel
import torch

max_seq_length = 32_768 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be True.


model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "AdrienB134/French-Alpaca-Mistral-7B-v0.3", 
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)

alpaca_prompt = """Ci-dessous tu trouveras une instruction qui décrit une tâche, accompagnée d'un contexte qui donne plus d'informations. Ecrit une réponse appropriée à l'instruction.
### Instruction:
{}

### Contexte:
{}

### Response:
{}"""

FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Continue la série de fibonacci.", # instruction
        "1, 1, 2, 3, 5, 8", # contexte
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
Downloads last month
25
Safetensors
Model size
7.25B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AdrienB134/French-Alpaca-Mistral-7B-v0.3

Finetuned
(11)
this model
Quantizations
1 model

Dataset used to train AdrienB134/French-Alpaca-Mistral-7B-v0.3