Uploaded model
- Developed by: AdrienB134
- License: apache-2.0
- Finetuned from model : unsloth/mistral-7b-v0.3
This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.
How to use
from unsloth import FastLanguageModel
import torch
max_seq_length = 32_768 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be True.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "AdrienB134/French-Alpaca-Mistral-7B-v0.3",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
alpaca_prompt = """Ci-dessous tu trouveras une instruction qui décrit une tâche, accompagnée d'un contexte qui donne plus d'informations. Ecrit une réponse appropriée à l'instruction.
### Instruction:
{}
### Contexte:
{}
### Response:
{}"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue la série de fibonacci.", # instruction
"1, 1, 2, 3, 5, 8", # contexte
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.