test-reward-model / README.md
Adzka's picture
Adzka/reward-model-distilbert-indo
f873f95 verified
metadata
license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: test-reward-model
    results: []

test-reward-model

This model is a fine-tuned version of w11wo/indonesian-roberta-base-sentiment-classifier on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2784
  • Accuracy: 0.8817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7179 0.67 50 0.6866 0.6237
0.6866 1.33 100 0.6661 0.7742
0.6546 2.0 150 0.6039 0.8280
0.5421 2.67 200 0.4624 0.8172
0.3965 3.33 250 0.3958 0.8280
0.3244 4.0 300 0.3502 0.8495
0.251 4.67 350 0.4012 0.8602
0.1579 5.33 400 0.3184 0.8602
0.135 6.0 450 0.3141 0.8710
0.1114 6.67 500 0.3474 0.8495
0.0929 7.33 550 0.2931 0.8495
0.0829 8.0 600 0.2757 0.8710
0.0834 8.67 650 0.2889 0.8817
0.057 9.33 700 0.2810 0.8925
0.0503 10.0 750 0.2800 0.8817
0.062 10.67 800 0.2806 0.8817
0.0303 11.33 850 0.2971 0.8817
0.0246 12.0 900 0.2784 0.8817

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.2