AetherV1 / README.md
HaoyiZhu's picture
Improve Model Card: Add Metadata, Paper Link, and Code Link (#1)
6c53ba7 verified
---
license: mit
pipeline_tag: image-to-video
library_name: CogVideoX
---
<div align="center">
# Aether: Geometric-Aware Unified World Modeling
</div>
<div align="center">
<img width="400" alt="image" src="assets/logo.png">
<!-- <br> -->
</div>
<div align="center">
<a href='https://arxiv.org/abs/2503.18945'><img src='https://img.shields.io/badge/arXiv-2503.18945-red'></a> &nbsp;
<a href='https://aether-world.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> &nbsp;
<a href='https://huggingface.co/spaces/AmberHeart/AetherV1'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a> &nbsp;
</div>
This repository contains the model used in the paper [Aether: Geometric-Aware Unified World Modeling](https://arxiv.org/abs/2503.18945).
Aether addresses a fundamental challenge in AI: integrating geometric reconstruction with generative modeling
for human-like spatial reasoning. Our framework unifies three core capabilities: (1) **4D dynamic reconstruction**,
(2) **action-conditioned video prediction**, and (3) **goal-conditioned visual planning**. Trained entirely on
synthetic data, Aether achieves strong zero-shot generalization to real-world scenarios.
<div align="center">
<img src="assets/teaser.png" alt="Teaser" width="800"/>
</div>
Find the code at https://github.com/OpenRobotLab/Aether.
## πŸ“ Citation
If you find this work useful in your research, please consider citing:
```bibtex
@article{aether,
title = {Aether: Geometric-Aware Unified World Modeling},
author = {Aether Team and Haoyi Zhu and Yifan Wang and Jianjun Zhou and Wenzheng Chang and Yang Zhou and Zizun Li and Junyi Chen and Chunhua Shen and Jiangmiao Pang and Tong He},
journal = {arXiv preprint arXiv:2503.18945},
year = {2025}
}
```
## βš–οΈ License
This repository is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## πŸ™ Acknowledgements
Our work is primarily built upon
[Accelerate](https://github.com/huggingface/accelerate),
[Diffusers](https://github.com/huggingface/diffusers),
[CogVideoX](https://github.com/THUDM/CogVideo),
[Finetrainers](https://github.com/a-r-r-o-w/finetrainers),
[DepthAnyVideo](https://github.com/Nightmare-n/DepthAnyVideo),
[CUT3R](https://github.com/CUT3R/CUT3R),
[MonST3R](https://github.com/Junyi42/monst3r),
[VBench](https://github.com/Vchitect/VBench),
[GST](https://github.com/SOTAMak1r/GST),
[SPA](https://github.com/HaoyiZhu/SPA),
[DroidCalib](https://github.com/boschresearch/DroidCalib),
[Grounded-SAM-2](https://github.com/IDEA-Research/Grounded-SAM-2),
[ceres-solver](https://github.com/ceres-solver/ceres-solver), etc.
We extend our gratitude to all these authors for their generously open-sourced code and their significant contributions to the community.