|
def chat(model, tokenizer): |
|
print("type \"q\" to quit. Automatically quits after 5 messages") |
|
|
|
for step in range(5): |
|
message = input("MESSAGE: ") |
|
|
|
if message in ["", "q"]: # if the user doesn't wanna talk |
|
break |
|
|
|
# encode the new user input, add the eos_token and return a tensor in Pytorch |
|
new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') |
|
|
|
# append the new user input tokens to the chat history |
|
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids |
|
|
|
# generated a response while limiting the total chat history to 1000 tokens, |
|
chat_history_ids = model.generate( |
|
bot_input_ids, |
|
max_length=1000, |
|
pad_token_id=tokenizer.eos_token_id, |
|
no_repeat_ngram_size=3, |
|
do_sample=True, |
|
top_k=100, |
|
top_p=0.7, |
|
temperature = 0.8, |
|
) |
|
# pretty print last ouput tokens from bot |
|
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) |
|
|
|
|