LlaMa2-CodeGen
This model is LlaMa2-7b which is fine-tuned on the CodeSearchNet dataset by using the method QLoRA with PEFT library.
Model Trained on Google Colab Pro Using AutoTrain, PEFT and QLoRA
You can load the LlaMa2-CodeGen model on google colab.
Example
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
peft_model_id = "AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def create_prompt(instruction):
system = "You are using the Llam2-CodeGen model, a coding assistant that will help the user to resolve the following instruction:\n"
instruction = "### Input: " + instruction
return system + "\n" + instruction + "\n\n" + "### Response:" + "\n"
def generate(
instruction,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
**kwargs,
):
prompt = create_prompt(instruction)
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
#input_ids = inputs["input_ids"].to("cuda")
#attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
#input_ids=input_ids,
#attention_mask=attention_mask,
**inputs,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
generated_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
stop_output = "### Input"
gen_response = (generated_response.split(stop_output))[0]
#s = generation_output.sequences[0]
#output = tokenizer.decode(s, skip_special_tokens=True)
#stop_output = "### Input"
#gen_response = (output.split(stop_output))[0]
#return output.split("### Response:")[1].lstrip("\n")
return gen_response
instruction = """
Write a python code for the name Ahmed to be in a reversed order
"""
print(generate(instruction))
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.