AhmedSSoliman's picture
Model save
a671687 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: answerdotai-ModernBERT-base-finetuned
    results: []

answerdotai-ModernBERT-base-finetuned

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0116
  • Accuracy: 0.9976
  • Precision: 0.9977
  • Recall: 0.9976
  • F1: 0.9976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.244005797262286e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0175 1.0 1506 0.0195 0.9971 0.9971 0.9971 0.9971
0.0134 2.0 3012 0.0153 0.9970 0.9970 0.9970 0.9970
0.0 3.0 4518 0.0228 0.9976 0.9976 0.9976 0.9976
0.0 4.0 6024 0.0270 0.9976 0.9976 0.9976 0.9976
0.0 5.0 7530 0.0272 0.9976 0.9976 0.9976 0.9976
0.0 6.0 9036 0.0279 0.9975 0.9975 0.9975 0.9975
0.0 7.0 10542 0.0283 0.9975 0.9975 0.9975 0.9975

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0