|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
datasets: |
|
- generator |
|
model-index: |
|
- name: Mistral_Sentiment_Classification_2024-06-02 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral_Sentiment_Classification_2024-06-02 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2.5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.4414 | 0.1126 | 100 | 0.3360 | |
|
| 0.3434 | 0.2252 | 200 | 0.3211 | |
|
| 0.3107 | 0.3378 | 300 | 0.3150 | |
|
| 0.3306 | 0.4505 | 400 | 0.3103 | |
|
| 0.3087 | 0.5631 | 500 | 0.3071 | |
|
| 0.3226 | 0.6757 | 600 | 0.3044 | |
|
| 0.3091 | 0.7883 | 700 | 0.3021 | |
|
| 0.3277 | 0.9009 | 800 | 0.3004 | |
|
| 0.3068 | 1.0135 | 900 | 0.2991 | |
|
| 0.295 | 1.1261 | 1000 | 0.2981 | |
|
| 0.2844 | 1.2387 | 1100 | 0.2964 | |
|
| 0.2885 | 1.3514 | 1200 | 0.2949 | |
|
| 0.3047 | 1.4640 | 1300 | 0.2938 | |
|
| 0.2985 | 1.5766 | 1400 | 0.2929 | |
|
| 0.2792 | 1.6892 | 1500 | 0.2922 | |
|
| 0.2739 | 1.8018 | 1600 | 0.2906 | |
|
| 0.2757 | 1.9144 | 1700 | 0.2897 | |
|
| 0.2632 | 2.0270 | 1800 | 0.2920 | |
|
| 0.2707 | 2.1396 | 1900 | 0.2927 | |
|
| 0.2615 | 2.2523 | 2000 | 0.2919 | |
|
| 0.2428 | 2.3649 | 2100 | 0.2913 | |
|
| 0.2614 | 2.4775 | 2200 | 0.2908 | |
|
| 0.2661 | 2.5901 | 2300 | 0.2904 | |
|
| 0.2711 | 2.7027 | 2400 | 0.2900 | |
|
| 0.2566 | 2.8153 | 2500 | 0.2888 | |
|
| 0.252 | 2.9279 | 2600 | 0.2884 | |
|
| 0.2623 | 3.0405 | 2700 | 0.2927 | |
|
| 0.2222 | 3.1532 | 2800 | 0.2942 | |
|
| 0.2446 | 3.2658 | 2900 | 0.2943 | |
|
| 0.2281 | 3.3784 | 3000 | 0.2942 | |
|
| 0.2284 | 3.4910 | 3100 | 0.2942 | |
|
| 0.2282 | 3.6036 | 3200 | 0.2937 | |
|
| 0.2218 | 3.7162 | 3300 | 0.2939 | |
|
| 0.2531 | 3.8288 | 3400 | 0.2919 | |
|
| 0.2396 | 3.9414 | 3500 | 0.2922 | |
|
| 0.2261 | 4.0541 | 3600 | 0.2989 | |
|
| 0.2202 | 4.1667 | 3700 | 0.3000 | |
|
| 0.2085 | 4.2793 | 3800 | 0.3001 | |
|
| 0.2132 | 4.3919 | 3900 | 0.3001 | |
|
| 0.2119 | 4.5045 | 4000 | 0.3005 | |
|
| 0.2285 | 4.6171 | 4100 | 0.2999 | |
|
| 0.2053 | 4.7297 | 4200 | 0.3003 | |
|
| 0.2097 | 4.8423 | 4300 | 0.3005 | |
|
| 0.2273 | 4.9550 | 4400 | 0.3000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |