Ai-Marshal's picture
Ai-Marshal/mistral_12.5k_A100_5epoch_adapter
5628eff verified
|
raw
history blame
3.73 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
datasets:
  - generator
model-index:
  - name: Mistral_Sentiment_Classification_2024-06-02
    results: []

Mistral_Sentiment_Classification_2024-06-02

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.4414 0.1126 100 0.3360
0.3434 0.2252 200 0.3211
0.3107 0.3378 300 0.3150
0.3306 0.4505 400 0.3103
0.3087 0.5631 500 0.3071
0.3226 0.6757 600 0.3044
0.3091 0.7883 700 0.3021
0.3277 0.9009 800 0.3004
0.3068 1.0135 900 0.2991
0.295 1.1261 1000 0.2981
0.2844 1.2387 1100 0.2964
0.2885 1.3514 1200 0.2949
0.3047 1.4640 1300 0.2938
0.2985 1.5766 1400 0.2929
0.2792 1.6892 1500 0.2922
0.2739 1.8018 1600 0.2906
0.2757 1.9144 1700 0.2897
0.2632 2.0270 1800 0.2920
0.2707 2.1396 1900 0.2927
0.2615 2.2523 2000 0.2919
0.2428 2.3649 2100 0.2913
0.2614 2.4775 2200 0.2908
0.2661 2.5901 2300 0.2904
0.2711 2.7027 2400 0.2900
0.2566 2.8153 2500 0.2888
0.252 2.9279 2600 0.2884
0.2623 3.0405 2700 0.2927
0.2222 3.1532 2800 0.2942
0.2446 3.2658 2900 0.2943
0.2281 3.3784 3000 0.2942
0.2284 3.4910 3100 0.2942
0.2282 3.6036 3200 0.2937
0.2218 3.7162 3300 0.2939
0.2531 3.8288 3400 0.2919
0.2396 3.9414 3500 0.2922
0.2261 4.0541 3600 0.2989
0.2202 4.1667 3700 0.3000
0.2085 4.2793 3800 0.3001
0.2132 4.3919 3900 0.3001
0.2119 4.5045 4000 0.3005
0.2285 4.6171 4100 0.2999
0.2053 4.7297 4200 0.3003
0.2097 4.8423 4300 0.3005
0.2273 4.9550 4400 0.3000

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1