File size: 8,541 Bytes
93bf619
61794f8
93bf619
 
 
 
 
61794f8
93bf619
 
 
 
 
 
 
 
61794f8
93bf619
61794f8
93bf619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61794f8
93bf619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61794f8
93bf619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61794f8
93bf619
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, TrainingArguments, Trainer
import os
import logging
import numpy as np
import torch
from tqdm.auto import tqdm

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('training.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Set up cache directory and token
os.environ["HF_HOME"] = "/tmp/cache"
os.makedirs("/tmp/cache", exist_ok=True)

# Get Hugging Face token securely
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("Hugging Face access token not found. Set it in the environment as 'HF_TOKEN'")

MODEL_HUB_ID = "Alaaeldin/example-model"  # Replace with your Hugging Face username
BASE_MODEL = "deepset/roberta-base-squad2"

class ModelTrainer:
    def __init__(self):
        self.metric = load_metric("squad")
        self.tokenizer = None
        self.model = None
    
    def load_tokenizer_and_model(self):
        """Load the tokenizer and model with error handling"""
        try:
            logger.info(f"Loading tokenizer and model from {BASE_MODEL}")
            self.tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
            self.model = AutoModelForQuestionAnswering.from_pretrained(BASE_MODEL)
            return True
        except Exception as e:
            logger.error(f"Error loading tokenizer and model: {e}")
            raise

    def preprocess_function(self, examples):
        """Preprocess the dataset examples"""
        try:
            tokenized_examples = self.tokenizer(
                examples["question"],
                examples["context"],
                truncation=True,
                max_length=384,
                stride=128,
                return_overflowing_tokens=True,
                return_offsets_mapping=True,
                padding="max_length",
            )
            
            sample_mapping = tokenized_examples["overflow_to_sample_mapping"]
            tokenized_examples["start_positions"] = []
            tokenized_examples["end_positions"] = []

            for i, offsets in enumerate(tokenized_examples["offset_mapping"]):
                sample_idx = sample_mapping[i]
                answers = examples["answers"][sample_idx]
                
                # Default values
                start_position = 0
                end_position = 0
                
                if len(answers["answer_start"]) > 0 and len(answers["text"]) > 0:
                    start_char = answers["answer_start"][0]
                    end_char = start_char + len(answers["text"][0])
                    
                    # Find token positions
                    token_start_index = 0
                    token_end_index = len(offsets) - 1

                    # Find start position
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    token_start_index -= 1

                    # Find end position
                    while token_end_index > 0 and offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    token_end_index += 1

                    if 0 <= token_start_index <= token_end_index < len(offsets):
                        start_position = token_start_index
                        end_position = token_end_index

                tokenized_examples["start_positions"].append(start_position)
                tokenized_examples["end_positions"].append(end_position)

            return tokenized_examples
        except Exception as e:
            logger.error(f"Error in preprocessing: {e}")
            raise

    def compute_metrics(self, eval_pred):
        """Compute evaluation metrics"""
        predictions, labels = eval_pred
        start_logits, end_logits = predictions
        
        start_predictions = np.argmax(start_logits, axis=-1)
        end_predictions = np.argmax(end_logits, axis=-1)
        
        results = self.metric.compute(
            predictions={
                "start_positions": start_predictions,
                "end_positions": end_predictions
            },
            references={
                "start_positions": labels[0],
                "end_positions": labels[1]
            }
        )
        return results

    def validate_model_outputs(self, model, tokenizer):
        """Validate model outputs with a test example"""
        logger.info("Validating model outputs...")
        try:
            test_question = "What is the capital of France?"
            test_context = "Paris is the capital of France."
            
            inputs = tokenizer(
                test_question,
                test_context,
                return_tensors="pt",
                truncation=True,
                max_length=384,
                padding="max_length"
            )
            
            outputs = model(**inputs)
            
            if not (isinstance(outputs.start_logits, torch.Tensor) and 
                    isinstance(outputs.end_logits, torch.Tensor)):
                raise ValueError("Model outputs validation failed")
                
            logger.info("Model validation successful!")
            return True
        except Exception as e:
            logger.error(f"Model validation failed: {e}")
            raise

    def train(self):
        """Main training function"""
        try:
            logger.info("Starting training pipeline...")
            
            # Load dataset with a smaller subset
            logger.info("Loading SQuAD dataset...")
            dataset = load_dataset("squad", split={
                'train': 'train[:1000]',
                'validation': 'validation[:100]'
            })
            
            # Load tokenizer and model
            self.load_tokenizer_and_model()
            
            # Preprocess dataset
            logger.info("Preprocessing dataset...")
            tokenized_dataset = dataset.map(
                self.preprocess_function,
                batched=True,
                remove_columns=dataset["train"].column_names,
                num_proc=2  # Reduced for Spaces
            )
            
            # Set up training arguments
            output_dir = "/tmp/results"
            os.makedirs(output_dir, exist_ok=True)
            
            training_args = TrainingArguments(
                output_dir=output_dir,
                evaluation_strategy="steps",
                eval_steps=100,
                save_strategy="steps",
                save_steps=100,
                learning_rate=3e-5,
                per_device_train_batch_size=4,
                per_device_eval_batch_size=4,
                num_train_epochs=1,
                weight_decay=0.01,
                load_best_model_at_end=True,
                metric_for_best_model="eval_loss",
                push_to_hub=True,
                hub_model_id=MODEL_HUB_ID,
                hub_token=HF_TOKEN,
                report_to=["tensorboard"],
                logging_dir="./logs",
                logging_steps=50,
                gradient_accumulation_steps=4,
                warmup_steps=100,
            )
            
            # Initialize trainer
            trainer = Trainer(
                model=self.model,
                args=training_args,
                train_dataset=tokenized_dataset["train"],
                eval_dataset=tokenized_dataset["validation"],
                compute_metrics=self.compute_metrics,
            )
            
            # Train the model
            logger.info("Starting training...")
            trainer.train()
            
            # Validate model
            self.validate_model_outputs(self.model, self.tokenizer)
            
            # Save and push to hub
            logger.info("Saving and pushing model to Hugging Face Hub...")
            trainer.save_model()
            self.model.push_to_hub(MODEL_HUB_ID, use_auth_token=HF_TOKEN)
            self.tokenizer.push_to_hub(MODEL_HUB_ID, use_auth_token=HF_TOKEN)
            
            logger.info("Training pipeline completed successfully!")
            
        except Exception as e:
            logger.error(f"Training pipeline failed: {e}")
            raise

if __name__ == "__main__":
    trainer = ModelTrainer()
    trainer.train()