Модель обучена в рамках практического задания по курсу "Практические аспекты обучения LLM": https://github.com/RefalMachine/rcc_msu_llm_course_autumn_2024/tree/main

This model is a fine-tuned version of ruadapt_qwen2.5_1.5B_ext_u48_mean_init on the Alant2000/taiga_cleared dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0484
  • Accuracy: 0.3071

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0008 1 7.8632 0.1493
4.0503 0.7593 1000 4.0488 0.3070

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
  • Datasets 2.18.0
  • Tokenizers 0.20.3
Downloads last month
8
Safetensors
Model size
1.53B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Alant2000/ruadapt_qwen2.5_1.5B_test

Evaluation results