Модель обучена в рамках практического задания по курсу "Практические аспекты обучения LLM": https://github.com/RefalMachine/rcc_msu_llm_course_autumn_2024/tree/main

This model is a fine-tuned version of ruadapt_qwen2.5_1.5B_ext_u48_mean_init on the Alant2000/taiga_cleared dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0484
  • Accuracy: 0.3071

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 16
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • total_eval_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.0008 1 7.8632 0.1493
4.0503 0.7593 1000 4.0488 0.3070

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
  • Datasets 2.18.0
  • Tokenizers 0.20.3
Downloads last month
129
Safetensors
Model size
1.53B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train Alant2000/ruadapt_qwen2.5_1.5B_test

Evaluation results