Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- Alant2000/taiga_cleared
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: output
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Causal Language Modeling
|
14 |
+
type: text-generation
|
15 |
+
dataset:
|
16 |
+
name: Alant2000/taiga_cleared
|
17 |
+
type: Alant2000/taiga_cleared
|
18 |
+
metrics:
|
19 |
+
- name: Accuracy
|
20 |
+
type: accuracy
|
21 |
+
value: 0.3070757857382329
|
22 |
+
---
|
23 |
+
|
24 |
+
Модель обучена в рамках практического задания по курсу "Практические аспекты обучения LLM": https://github.com/RefalMachine/rcc_msu_llm_course_autumn_2024/tree/main
|
25 |
+
|
26 |
+
This model is a fine-tuned version of ruadapt_qwen2.5_1.5B_ext_u48_mean_init on the [Alant2000/taiga_cleared](https://huggingface.co/datasets/Alant2000/taiga_cleared) dataset.
|
27 |
+
It achieves the following results on the evaluation set:
|
28 |
+
- Loss: 4.0484
|
29 |
+
- Accuracy: 0.3071
|
30 |
+
|
31 |
+
### Training hyperparameters
|
32 |
+
|
33 |
+
The following hyperparameters were used during training:
|
34 |
+
- learning_rate: 0.0001
|
35 |
+
- train_batch_size: 16
|
36 |
+
- eval_batch_size: 16
|
37 |
+
- seed: 42
|
38 |
+
- distributed_type: multi-GPU
|
39 |
+
- num_devices: 16
|
40 |
+
- gradient_accumulation_steps: 4
|
41 |
+
- total_train_batch_size: 1024
|
42 |
+
- total_eval_batch_size: 256
|
43 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- lr_scheduler_warmup_steps: 100
|
46 |
+
- num_epochs: 1.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
52 |
+
| No log | 0.0008 | 1 | 7.8632 | 0.1493 |
|
53 |
+
| 4.0503 | 0.7593 | 1000 | 4.0488 | 0.3070 |
|
54 |
+
|
55 |
+
|
56 |
+
### Framework versions
|
57 |
+
|
58 |
+
- Transformers 4.45.2
|
59 |
+
- Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
|
60 |
+
- Datasets 2.18.0
|
61 |
+
- Tokenizers 0.20.3
|