Alant2000 commited on
Commit
f413841
·
verified ·
1 Parent(s): b2563c7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - Alant2000/taiga_cleared
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: output
11
+ results:
12
+ - task:
13
+ name: Causal Language Modeling
14
+ type: text-generation
15
+ dataset:
16
+ name: Alant2000/taiga_cleared
17
+ type: Alant2000/taiga_cleared
18
+ metrics:
19
+ - name: Accuracy
20
+ type: accuracy
21
+ value: 0.3070757857382329
22
+ ---
23
+
24
+ Модель обучена в рамках практического задания по курсу "Практические аспекты обучения LLM": https://github.com/RefalMachine/rcc_msu_llm_course_autumn_2024/tree/main
25
+
26
+ This model is a fine-tuned version of ruadapt_qwen2.5_1.5B_ext_u48_mean_init on the [Alant2000/taiga_cleared](https://huggingface.co/datasets/Alant2000/taiga_cleared) dataset.
27
+ It achieves the following results on the evaluation set:
28
+ - Loss: 4.0484
29
+ - Accuracy: 0.3071
30
+
31
+ ### Training hyperparameters
32
+
33
+ The following hyperparameters were used during training:
34
+ - learning_rate: 0.0001
35
+ - train_batch_size: 16
36
+ - eval_batch_size: 16
37
+ - seed: 42
38
+ - distributed_type: multi-GPU
39
+ - num_devices: 16
40
+ - gradient_accumulation_steps: 4
41
+ - total_train_batch_size: 1024
42
+ - total_eval_batch_size: 256
43
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_steps: 100
46
+ - num_epochs: 1.0
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
52
+ | No log | 0.0008 | 1 | 7.8632 | 0.1493 |
53
+ | 4.0503 | 0.7593 | 1000 | 4.0488 | 0.3070 |
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.45.2
59
+ - Pytorch 2.3.0a0+6ddf5cf85e.nv24.04
60
+ - Datasets 2.18.0
61
+ - Tokenizers 0.20.3