|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
language: |
|
- sr |
|
model_index: |
|
- name: distilbert-srb-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
args: sr |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9576561462374611 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-srb-ner |
|
|
|
This model was trained from scratch on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2972 |
|
- Precision: 0.8871 |
|
- Recall: 0.9100 |
|
- F1: 0.8984 |
|
- Accuracy: 0.9577 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3818 | 1.0 | 625 | 0.2175 | 0.8175 | 0.8370 | 0.8272 | 0.9306 | |
|
| 0.198 | 2.0 | 1250 | 0.1766 | 0.8551 | 0.8732 | 0.8640 | 0.9458 | |
|
| 0.1423 | 3.0 | 1875 | 0.1702 | 0.8597 | 0.8763 | 0.8679 | 0.9473 | |
|
| 0.079 | 4.0 | 2500 | 0.1774 | 0.8674 | 0.8875 | 0.8773 | 0.9515 | |
|
| 0.0531 | 5.0 | 3125 | 0.2011 | 0.8688 | 0.8965 | 0.8825 | 0.9522 | |
|
| 0.0429 | 6.0 | 3750 | 0.2082 | 0.8769 | 0.8970 | 0.8868 | 0.9538 | |
|
| 0.032 | 7.0 | 4375 | 0.2268 | 0.8764 | 0.8916 | 0.8839 | 0.9528 | |
|
| 0.0204 | 8.0 | 5000 | 0.2423 | 0.8726 | 0.8959 | 0.8841 | 0.9529 | |
|
| 0.0148 | 9.0 | 5625 | 0.2522 | 0.8774 | 0.8991 | 0.8881 | 0.9538 | |
|
| 0.0125 | 10.0 | 6250 | 0.2544 | 0.8823 | 0.9024 | 0.8922 | 0.9559 | |
|
| 0.0108 | 11.0 | 6875 | 0.2592 | 0.8780 | 0.9041 | 0.8909 | 0.9553 | |
|
| 0.007 | 12.0 | 7500 | 0.2672 | 0.8877 | 0.9056 | 0.8965 | 0.9571 | |
|
| 0.0048 | 13.0 | 8125 | 0.2714 | 0.8879 | 0.9089 | 0.8982 | 0.9583 | |
|
| 0.0049 | 14.0 | 8750 | 0.2872 | 0.8873 | 0.9068 | 0.8970 | 0.9573 | |
|
| 0.0034 | 15.0 | 9375 | 0.2915 | 0.8883 | 0.9114 | 0.8997 | 0.9577 | |
|
| 0.0027 | 16.0 | 10000 | 0.2890 | 0.8865 | 0.9103 | 0.8983 | 0.9581 | |
|
| 0.0028 | 17.0 | 10625 | 0.2885 | 0.8877 | 0.9085 | 0.8980 | 0.9576 | |
|
| 0.0014 | 18.0 | 11250 | 0.2928 | 0.8860 | 0.9073 | 0.8965 | 0.9577 | |
|
| 0.0013 | 19.0 | 11875 | 0.2963 | 0.8856 | 0.9099 | 0.8976 | 0.9576 | |
|
| 0.001 | 20.0 | 12500 | 0.2972 | 0.8871 | 0.9100 | 0.8984 | 0.9577 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.2 |
|
- Pytorch 1.9.0 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.1 |
|
|