6.7b-ri-reproduce-combined-4-gpu-20-val-v2

This model is a fine-tuned version of facebook/opt-6.7b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9434
  • Accuracy: 0.0329
  • Perplexity: 51.5916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-07
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 100
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Perplexity
2.5731 1.0 79 2.6113 0.0317 13.6171
2.206 2.0 158 2.4805 0.0328 11.9469
1.9105 3.0 237 2.4512 0.0333 11.6019
1.6301 4.0 316 2.5078 0.0345 12.2780
1.3733 5.0 395 2.6816 0.0342 14.6090
1.1337 6.0 474 3.0078 0.0330 20.2431
0.9619 7.0 553 3.1777 0.0330 23.9923
0.798 8.0 632 3.2559 0.0330 25.9419
0.6653 9.0 711 3.4277 0.0331 30.8068
0.552 10.0 790 3.5566 0.0333 35.0453
0.4568 11.0 869 3.7324 0.0324 41.7802
0.3756 12.0 948 3.8184 0.0328 45.5295
0.3119 13.0 1027 3.8477 0.0331 46.8831
0.2448 14.0 1106 3.9062 0.0329 49.7122
0.1986 15.0 1185 3.9434 0.0329 51.5916

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.