import torch
import transformers
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
t5_tokenizer = transformers.GPT2Tokenizer.from_pretrained("AlexWortega/FlanFred")
t5_model = transformers.T5ForConditionalGeneration.from_pretrained("AlexWortega/FlanFred")
def generate_text(input_str, tokenizer, model, device, max_length=50):
# encode the input string to model's input_ids
input_ids = tokenizer.encode(input_str, return_tensors='pt').to(device)
# generate text
with torch.no_grad():
outputs = model.generate(input_ids=input_ids, max_length=max_length, num_return_sequences=1, temperature=0.7, do_sample=True)
# decode the output and return the text
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# usage:
input_str = "Hello, how are you?"
print(generate_text(input_str, t5_tokenizer, t5_model, device))
Metrics:
| Metric | flanfred | siberianfred | fred |
| ------------- | ----- |------ |----- |
| xnli_en | 0.51 |0.49 |0.041 |
| xnli_ru | 0.71 |0.62 |0.55 |
| xwinograd_ru | 0.66 |0.51 |0.54 |
Citation
@MISC{AlexWortega/flan_translated_300k,
author = {Pavel Ilin, Ksenia Zolian,Ilya kuleshov, Egor Kokush, Aleksandr Nikolich},
title = {Russian Flan translated},
url = {https://huggingface.co/datasets/AlexWortega/flan_translated_300k},
year = 2023
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.