|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- id_liputan6 |
|
model-index: |
|
- name: bert2bert-extremecleandata-lr-5e-05-batchsize-2-encmaxlen-2048-decmaxlen-512-abs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert2bert-extremecleandata-lr-5e-05-batchsize-2-encmaxlen-2048-decmaxlen-512-abs |
|
- Dev set: Extreme clean data |
|
- Encoder max length (input): 2048 |
|
- Decoder max length (output): 512 |
|
|
|
This model was trained from scratch on the id_liputan6 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 9.4148 |
|
- R1 Precision: 0.0188 |
|
- R1 Recall: 0.0105 |
|
- R1 Fmeasure: 0.0133 |
|
- R2 Precision: 0.0 |
|
- R2 Recall: 0.0 |
|
- R2 Fmeasure: 0.0 |
|
- Rl Precision: 0.0188 |
|
- Rl Recall: 0.0106 |
|
- Rl Fmeasure: 0.0133 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure | |
|
|:-------------:|:-----:|:------:|:---------------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:|:------------:|:---------:|:-----------:| |
|
| 7.0391 | 1.0 | 96942 | 8.9423 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0106 | 0.0133 | |
|
| 7.0611 | 2.0 | 193884 | 8.9023 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0106 | 0.0133 | |
|
| 7.0266 | 3.0 | 290826 | 9.4047 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0106 | 0.0133 | |
|
| 7.0237 | 4.0 | 387768 | 9.2888 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0106 | 0.0133 | |
|
| 6.9911 | 5.0 | 484710 | 9.4148 | 0.0188 | 0.0105 | 0.0133 | 0.0 | 0.0 | 0.0 | 0.0188 | 0.0106 | 0.0133 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|