AliShah07's picture
End of training
d22b89c verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-stamp-verification2
    results: []

segformer-b0-finetuned-segments-stamp-verification2

This model is a fine-tuned version of nvidia/mit-b0 on the AliShah07/stamp-verification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0365
  • Mean Iou: 0.1372
  • Mean Accuracy: 0.2744
  • Overall Accuracy: 0.2744
  • Accuracy Unlabeled: nan
  • Accuracy Stamp: 0.2744
  • Iou Unlabeled: 0.0
  • Iou Stamp: 0.2744

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Stamp Iou Unlabeled Iou Stamp
0.4566 0.8333 20 0.4738 0.1430 0.2860 0.2860 nan 0.2860 0.0 0.2860
0.3076 1.6667 40 0.3046 0.1307 0.2614 0.2614 nan 0.2614 0.0 0.2614
0.2373 2.5 60 0.2226 0.0604 0.1209 0.1209 nan 0.1209 0.0 0.1209
0.2184 3.3333 80 0.2220 0.1942 0.3884 0.3884 nan 0.3884 0.0 0.3884
0.1578 4.1667 100 0.1704 0.2468 0.4936 0.4936 nan 0.4936 0.0 0.4936
0.1412 5.0 120 0.1269 0.0376 0.0751 0.0751 nan 0.0751 0.0 0.0751
0.1109 5.8333 140 0.1076 0.2741 0.5483 0.5483 nan 0.5483 0.0 0.5483
0.106 6.6667 160 0.0892 0.0583 0.1166 0.1166 nan 0.1166 0.0 0.1166
0.0899 7.5 180 0.0747 0.0173 0.0346 0.0346 nan 0.0346 0.0 0.0346
0.0794 8.3333 200 0.0683 0.0189 0.0378 0.0378 nan 0.0378 0.0 0.0378
0.0741 9.1667 220 0.0639 0.0981 0.1963 0.1963 nan 0.1963 0.0 0.1963
0.0832 10.0 240 0.0559 0.0599 0.1198 0.1198 nan 0.1198 0.0 0.1198
0.0575 10.8333 260 0.0527 0.0769 0.1538 0.1538 nan 0.1538 0.0 0.1538
0.05 11.6667 280 0.0502 0.0852 0.1704 0.1704 nan 0.1704 0.0 0.1704
0.0523 12.5 300 0.0446 0.1038 0.2076 0.2076 nan 0.2076 0.0 0.2076
0.0481 13.3333 320 0.0431 0.0956 0.1913 0.1913 nan 0.1913 0.0 0.1913
0.0471 14.1667 340 0.0420 0.1330 0.2660 0.2660 nan 0.2660 0.0 0.2660
0.042 15.0 360 0.0412 0.1124 0.2248 0.2248 nan 0.2248 0.0 0.2248
0.041 15.8333 380 0.0400 0.1144 0.2288 0.2288 nan 0.2288 0.0 0.2288
0.0444 16.6667 400 0.0383 0.1415 0.2830 0.2830 nan 0.2830 0.0 0.2830
0.0514 17.5 420 0.0377 0.0779 0.1559 0.1559 nan 0.1559 0.0 0.1559
0.0434 18.3333 440 0.0374 0.1482 0.2964 0.2964 nan 0.2964 0.0 0.2964
0.0383 19.1667 460 0.0363 0.1843 0.3686 0.3686 nan 0.3686 0.0 0.3686
0.0411 20.0 480 0.0365 0.1372 0.2744 0.2744 nan 0.2744 0.0 0.2744

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1