File size: 13,386 Bytes
22270be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from __future__ import annotations

import logging
import math
import os
from typing import Dict, List, Optional

import torch
from PIL import Image
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
from transformers import AutoModelForVision2Seq, AutoProcessor


class GmeQwen2VL:
    def __init__(
        self,
        model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
        model_path: Optional[str] = None,
        device: str = "cuda" if torch.cuda.is_available() else "cpu",
        min_image_tokens=256,
        max_image_tokens=1280,
        max_length=1800,
        **kwargs,
    ) -> None:
        model_name = model_path or model_name
        self.base = AutoModelForVision2Seq.from_pretrained(
            model_name, torch_dtype=torch.float16, **kwargs
        )
        self.base.eval()
        self.normalize = True
        self.device = device
        min_pixels = min_image_tokens * 28 * 28
        max_pixels = max_image_tokens * 28 * 28
        self.max_length = max_length
        self.processor = AutoProcessor.from_pretrained(
            model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
        )
        self.processor.tokenizer.padding_side = 'right'
        self.defualt_instruction = 'You are a helpful assistant.'
        self.sep = ' '

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        # pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        # video_grid_thw: Optional[torch.LongTensor] = None,
        pooling_mask: Optional[torch.LongTensor] = None,
        **kwargs
    ) -> torch.Tensor:
        if inputs_embeds is None:
            inputs_embeds = self.base.model.embed_tokens(input_ids)
            if pixel_values is not None:
                pixel_values = pixel_values.type(self.base.visual.get_dtype())
                image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
                image_mask = input_ids == self.base.config.image_token_id
                inputs_embeds[image_mask] = image_embeds
            # if pixel_values_videos is not None:
            #     pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
            #     video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
            #     video_mask = input_ids == self.base.config.video_token_id
            #     inputs_embeds[video_mask] = video_embeds
            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        outputs = self.base.model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
        )

        pooling_mask = attention_mask if pooling_mask is None else pooling_mask
        left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0])  # TODO
        if left_padding:
            embeddings = outputs.last_hidden_state[:, -1]
        else:
            sequence_lengths = pooling_mask.sum(dim=1) - 1
            batch_size = outputs.last_hidden_state.shape[0]
            embeddings = outputs.last_hidden_state[torch.arange(
                batch_size, device=outputs.last_hidden_state.device
            ), sequence_lengths]
        if self.normalize:
            embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
        return embeddings.contiguous()

    def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
        self.base.to(self.device)
        # Inputs must be batched
        input_texts, input_images = list(), list()
        for t, i in zip(texts, images):
            if not is_query or instruction is None:
                instruction = self.defualt_instruction
            input_str = ''
            if i is None:
                input_images = None  # All examples in the same batch are consistent
            else:
                input_str += '<|vision_start|><|image_pad|><|vision_end|>'
                i = fetch_image(i)
                input_images.append(i)
            if t is not None:
                input_str += t
            msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
            input_texts.append(msg)

        inputs = self.processor(
            text=input_texts,
            images=input_images,
            padding=True,
            truncation=True,
            max_length=self.max_length,
            return_tensors='pt'
        )
        inputs = {k: v.to(self.device) for k, v in inputs.items()}  # TODO
        with torch.no_grad():
            embeddings = self.forward(**inputs)
        return embeddings

    def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
        return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)

    def encode_queries(self, queries: List[str], **kwargs):
        embeddings = self.encode(queries, **kwargs)
        return embeddings

    def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
        if type(corpus) is dict:
            sentences = [
                (corpus["title"][i] + self.sep + corpus["text"][i]).strip()
                if "title" in corpus
                else corpus["text"][i].strip()
                for i in range(len(corpus["text"]))
            ]
        else:
            sentences = [
                (doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
                for doc in corpus
            ]
        embeddings = self.encode(sentences, is_query=False, **kwargs)
        return embeddings

    def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
        return self.get_fused_embeddings(images=images, **kwargs)

    def get_text_embeddings(self, texts: list[str], **kwargs):
        return self.get_fused_embeddings(texts=texts, **kwargs)

    def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
        if isinstance(images, DataLoader):
            image_loader = images
            batch_size = image_loader.batch_size
            image_loader.dataset.transform = None
        else:
            batch_size = kwargs.pop('batch_size', 32)
            if images is None:
                image_loader = None
            else:
                image_loader = DataLoader(
                    images,
                    batch_size=batch_size,
                    shuffle=False,
                    collate_fn=custom_collate_fn,
                    num_workers=min(math.floor(os.cpu_count() / 2), 8),
                )

        if texts is None:
            assert image_loader is not None
            n_batch = len(image_loader)
        else:
            n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
            image_loader = image_loader or [None] * n_batch

        all_embeddings = list()
        none_batch = [None] * batch_size
        show_progress_bar = kwargs.pop('show_progress_bar', True)
        pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
        for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
            text_batch = none_batch if texts is None else texts[n: n+batch_size]
            img_batch = none_batch if img_batch is None else img_batch
            embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
            pbar.update(1)
            all_embeddings.append(embeddings.cpu())
        pbar.close()
        all_embeddings = torch.cat(all_embeddings, dim=0)
        return all_embeddings


def custom_collate_fn(batch):
    return batch


### Copied from qwen_vl_utils.vision_process.py
import base64
from io import BytesIO
import requests

IMAGE_FACTOR = 28
MIN_PIXELS = 4 * 28 * 28
MAX_PIXELS = 16384 * 28 * 28
MAX_RATIO = 200


def round_by_factor(number: int, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: int, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: int, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


def smart_resize(
    height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
    """
    Rescales the image so that the following conditions are met:

    1. Both dimensions (height and width) are divisible by 'factor'.

    2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].

    3. The aspect ratio of the image is maintained as closely as possible.
    """
    h_bar = max(factor, round_by_factor(height, factor))
    w_bar = max(factor, round_by_factor(width, factor))
    if h_bar * w_bar > max_pixels:
        beta = math.sqrt((height * width) / max_pixels)
        h_bar = floor_by_factor(height / beta, factor)
        w_bar = floor_by_factor(width / beta, factor)
    elif h_bar * w_bar < min_pixels:
        beta = math.sqrt(min_pixels / (height * width))
        h_bar = ceil_by_factor(height * beta, factor)
        w_bar = ceil_by_factor(width * beta, factor)

    if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
        logging.warning(
            f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
        )
        if h_bar > w_bar:
            h_bar = w_bar * MAX_RATIO
        else:
            w_bar = h_bar * MAX_RATIO
    return h_bar, w_bar


def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
    image_obj = None
    if isinstance(image, Image.Image):
        image_obj = image
    elif image.startswith("http://") or image.startswith("https://"):
        image_obj = Image.open(requests.get(image, stream=True).raw)
    elif image.startswith("file://"):
        image_obj = Image.open(image[7:])
    elif image.startswith("data:image"):
        if "base64," in image:
            _, base64_data = image.split("base64,", 1)
            data = base64.b64decode(base64_data)
            image_obj = Image.open(BytesIO(data))
    else:
        image_obj = Image.open(image)
    if image_obj is None:
        raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
    image = image_obj.convert("RGB")
    ## resize
    # if "resized_height" in ele and "resized_width" in ele:
    #     resized_height, resized_width = smart_resize(
    #         ele["resized_height"],
    #         ele["resized_width"],
    #         factor=size_factor,
    #     )
    # else:
    width, height = image.size
    # min_pixels = ele.get("min_pixels", MIN_PIXELS)
    # max_pixels = ele.get("max_pixels", MAX_PIXELS)
    resized_height, resized_width = smart_resize(
        height,
        width,
        factor=size_factor,
        min_pixels=MIN_PIXELS,
        max_pixels=MAX_PIXELS,
    )
    image = image.resize((resized_width, resized_height))

    return image
###


if __name__ == '__main__':
    texts = [
        "What kind of car is this?",
        "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
    ]
    images = [
        # 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
        '/nas-alinlp/linzhang.zx/gme_space/assets/Tesla_Cybertruck_damaged_window.jpg',
        # 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
        '/nas-alinlp/linzhang.zx/gme_space/assets/2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
    ]

    gme = GmeQwen2VL("/nas-alinlp/linzhang.zx/gme_space/gme-Qwen2-VL-2B-instruct")

    # Single-modal embedding
    e_text = gme.get_text_embeddings(texts=texts)
    e_image = gme.get_image_embeddings(images=images)
    print((e_text * e_image).sum(-1))
    ## tensor([0.2281, 0.6001], dtype=torch.float16)

    # How to set embedding instruction
    e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
    # If is_query=False, we always use the default instruction.
    e_corpus = gme.get_image_embeddings(images=images, is_query=False)
    print((e_query * e_corpus).sum(-1))
    ## tensor([0.2433, 0.7051], dtype=torch.float16)

    # Fused-modal embedding
    e_fused = gme.get_fused_embeddings(texts=texts, images=images)
    print((e_fused[0] * e_fused[1]).sum())
    ## tensor(0.6108, dtype=torch.float16)