|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- Qwen/Qwen2-VL-2B-Instruct |
|
language: |
|
- en |
|
- zh |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
- Qwen2-VL |
|
- sentence-similarity |
|
- vidore |
|
model-index: |
|
- name: gme-Qwen2-VL-2B-Instruct |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 72.55223880597015 |
|
- type: ap |
|
value: 35.01515316721116 |
|
- type: f1 |
|
value: 66.44086070814382 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 96.75819999999999 |
|
- type: ap |
|
value: 95.51009242092881 |
|
- type: f1 |
|
value: 96.75713119357414 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 61.971999999999994 |
|
- type: f1 |
|
value: 60.50745575187704 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 36.272999999999996 |
|
- type: map_at_10 |
|
value: 52.782 |
|
- type: map_at_100 |
|
value: 53.339999999999996 |
|
- type: map_at_1000 |
|
value: 53.342999999999996 |
|
- type: map_at_3 |
|
value: 48.4 |
|
- type: map_at_5 |
|
value: 50.882000000000005 |
|
- type: mrr_at_1 |
|
value: 36.984 |
|
- type: mrr_at_10 |
|
value: 53.052 |
|
- type: mrr_at_100 |
|
value: 53.604 |
|
- type: mrr_at_1000 |
|
value: 53.607000000000006 |
|
- type: mrr_at_3 |
|
value: 48.613 |
|
- type: mrr_at_5 |
|
value: 51.159 |
|
- type: ndcg_at_1 |
|
value: 36.272999999999996 |
|
- type: ndcg_at_10 |
|
value: 61.524 |
|
- type: ndcg_at_100 |
|
value: 63.796 |
|
- type: ndcg_at_1000 |
|
value: 63.869 |
|
- type: ndcg_at_3 |
|
value: 52.456 |
|
- type: ndcg_at_5 |
|
value: 56.964000000000006 |
|
- type: precision_at_1 |
|
value: 36.272999999999996 |
|
- type: precision_at_10 |
|
value: 8.926 |
|
- type: precision_at_100 |
|
value: 0.989 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 21.407999999999998 |
|
- type: precision_at_5 |
|
value: 15.049999999999999 |
|
- type: recall_at_1 |
|
value: 36.272999999999996 |
|
- type: recall_at_10 |
|
value: 89.25999999999999 |
|
- type: recall_at_100 |
|
value: 98.933 |
|
- type: recall_at_1000 |
|
value: 99.502 |
|
- type: recall_at_3 |
|
value: 64.225 |
|
- type: recall_at_5 |
|
value: 75.249 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 52.45236368396085 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 46.83781937870832 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 60.653430349851746 |
|
- type: mrr |
|
value: 74.28736314470387 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.18568151905953 |
|
- type: cos_sim_spearman |
|
value: 86.47666922475281 |
|
- type: euclidean_pearson |
|
value: 87.25416218056225 |
|
- type: euclidean_spearman |
|
value: 86.47666922475281 |
|
- type: manhattan_pearson |
|
value: 87.04960508086356 |
|
- type: manhattan_spearman |
|
value: 86.73992823533615 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 80.2435064935065 |
|
- type: f1 |
|
value: 79.44078343737895 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 44.68220155432257 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 40.666150477589284 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.623 |
|
- type: map_at_10 |
|
value: 40.482 |
|
- type: map_at_100 |
|
value: 41.997 |
|
- type: map_at_1000 |
|
value: 42.135 |
|
- type: map_at_3 |
|
value: 37.754 |
|
- type: map_at_5 |
|
value: 39.031 |
|
- type: mrr_at_1 |
|
value: 37.482 |
|
- type: mrr_at_10 |
|
value: 46.311 |
|
- type: mrr_at_100 |
|
value: 47.211999999999996 |
|
- type: mrr_at_1000 |
|
value: 47.27 |
|
- type: mrr_at_3 |
|
value: 44.157999999999994 |
|
- type: mrr_at_5 |
|
value: 45.145 |
|
- type: ndcg_at_1 |
|
value: 37.482 |
|
- type: ndcg_at_10 |
|
value: 46.142 |
|
- type: ndcg_at_100 |
|
value: 51.834 |
|
- type: ndcg_at_1000 |
|
value: 54.164 |
|
- type: ndcg_at_3 |
|
value: 42.309000000000005 |
|
- type: ndcg_at_5 |
|
value: 43.485 |
|
- type: precision_at_1 |
|
value: 37.482 |
|
- type: precision_at_10 |
|
value: 8.455 |
|
- type: precision_at_100 |
|
value: 1.3780000000000001 |
|
- type: precision_at_1000 |
|
value: 0.188 |
|
- type: precision_at_3 |
|
value: 20.172 |
|
- type: precision_at_5 |
|
value: 13.705 |
|
- type: recall_at_1 |
|
value: 30.623 |
|
- type: recall_at_10 |
|
value: 56.77100000000001 |
|
- type: recall_at_100 |
|
value: 80.034 |
|
- type: recall_at_1000 |
|
value: 94.62899999999999 |
|
- type: recall_at_3 |
|
value: 44.663000000000004 |
|
- type: recall_at_5 |
|
value: 48.692 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.941 |
|
- type: map_at_10 |
|
value: 38.437 |
|
- type: map_at_100 |
|
value: 39.625 |
|
- type: map_at_1000 |
|
value: 39.753 |
|
- type: map_at_3 |
|
value: 35.388999999999996 |
|
- type: map_at_5 |
|
value: 37.113 |
|
- type: mrr_at_1 |
|
value: 34.522000000000006 |
|
- type: mrr_at_10 |
|
value: 43.864999999999995 |
|
- type: mrr_at_100 |
|
value: 44.533 |
|
- type: mrr_at_1000 |
|
value: 44.580999999999996 |
|
- type: mrr_at_3 |
|
value: 41.55 |
|
- type: mrr_at_5 |
|
value: 42.942 |
|
- type: ndcg_at_1 |
|
value: 34.522000000000006 |
|
- type: ndcg_at_10 |
|
value: 44.330000000000005 |
|
- type: ndcg_at_100 |
|
value: 48.61 |
|
- type: ndcg_at_1000 |
|
value: 50.712999999999994 |
|
- type: ndcg_at_3 |
|
value: 39.834 |
|
- type: ndcg_at_5 |
|
value: 42.016 |
|
- type: precision_at_1 |
|
value: 34.522000000000006 |
|
- type: precision_at_10 |
|
value: 8.471 |
|
- type: precision_at_100 |
|
value: 1.3379999999999999 |
|
- type: precision_at_1000 |
|
value: 0.182 |
|
- type: precision_at_3 |
|
value: 19.363 |
|
- type: precision_at_5 |
|
value: 13.898 |
|
- type: recall_at_1 |
|
value: 27.941 |
|
- type: recall_at_10 |
|
value: 55.336 |
|
- type: recall_at_100 |
|
value: 73.51100000000001 |
|
- type: recall_at_1000 |
|
value: 86.636 |
|
- type: recall_at_3 |
|
value: 42.54 |
|
- type: recall_at_5 |
|
value: 48.392 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.681 |
|
- type: map_at_10 |
|
value: 45.48 |
|
- type: map_at_100 |
|
value: 46.542 |
|
- type: map_at_1000 |
|
value: 46.604 |
|
- type: map_at_3 |
|
value: 42.076 |
|
- type: map_at_5 |
|
value: 44.076 |
|
- type: mrr_at_1 |
|
value: 37.492 |
|
- type: mrr_at_10 |
|
value: 48.746 |
|
- type: mrr_at_100 |
|
value: 49.485 |
|
- type: mrr_at_1000 |
|
value: 49.517 |
|
- type: mrr_at_3 |
|
value: 45.998 |
|
- type: mrr_at_5 |
|
value: 47.681000000000004 |
|
- type: ndcg_at_1 |
|
value: 37.492 |
|
- type: ndcg_at_10 |
|
value: 51.778999999999996 |
|
- type: ndcg_at_100 |
|
value: 56.294 |
|
- type: ndcg_at_1000 |
|
value: 57.58 |
|
- type: ndcg_at_3 |
|
value: 45.856 |
|
- type: ndcg_at_5 |
|
value: 48.968 |
|
- type: precision_at_1 |
|
value: 37.492 |
|
- type: precision_at_10 |
|
value: 8.620999999999999 |
|
- type: precision_at_100 |
|
value: 1.189 |
|
- type: precision_at_1000 |
|
value: 0.135 |
|
- type: precision_at_3 |
|
value: 20.773 |
|
- type: precision_at_5 |
|
value: 14.596 |
|
- type: recall_at_1 |
|
value: 32.681 |
|
- type: recall_at_10 |
|
value: 67.196 |
|
- type: recall_at_100 |
|
value: 87.027 |
|
- type: recall_at_1000 |
|
value: 96.146 |
|
- type: recall_at_3 |
|
value: 51.565000000000005 |
|
- type: recall_at_5 |
|
value: 59.123999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.421 |
|
- type: map_at_10 |
|
value: 30.127 |
|
- type: map_at_100 |
|
value: 31.253999999999998 |
|
- type: map_at_1000 |
|
value: 31.344 |
|
- type: map_at_3 |
|
value: 27.673 |
|
- type: map_at_5 |
|
value: 29.182000000000002 |
|
- type: mrr_at_1 |
|
value: 24.068 |
|
- type: mrr_at_10 |
|
value: 31.857000000000003 |
|
- type: mrr_at_100 |
|
value: 32.808 |
|
- type: mrr_at_1000 |
|
value: 32.881 |
|
- type: mrr_at_3 |
|
value: 29.397000000000002 |
|
- type: mrr_at_5 |
|
value: 30.883 |
|
- type: ndcg_at_1 |
|
value: 24.068 |
|
- type: ndcg_at_10 |
|
value: 34.642 |
|
- type: ndcg_at_100 |
|
value: 40.327 |
|
- type: ndcg_at_1000 |
|
value: 42.55 |
|
- type: ndcg_at_3 |
|
value: 29.868 |
|
- type: ndcg_at_5 |
|
value: 32.461 |
|
- type: precision_at_1 |
|
value: 24.068 |
|
- type: precision_at_10 |
|
value: 5.390000000000001 |
|
- type: precision_at_100 |
|
value: 0.873 |
|
- type: precision_at_1000 |
|
value: 0.109 |
|
- type: precision_at_3 |
|
value: 12.692999999999998 |
|
- type: precision_at_5 |
|
value: 9.107 |
|
- type: recall_at_1 |
|
value: 22.421 |
|
- type: recall_at_10 |
|
value: 46.846 |
|
- type: recall_at_100 |
|
value: 73.409 |
|
- type: recall_at_1000 |
|
value: 90.06 |
|
- type: recall_at_3 |
|
value: 34.198 |
|
- type: recall_at_5 |
|
value: 40.437 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.494 |
|
- type: map_at_10 |
|
value: 24.4 |
|
- type: map_at_100 |
|
value: 25.718999999999998 |
|
- type: map_at_1000 |
|
value: 25.840000000000003 |
|
- type: map_at_3 |
|
value: 21.731 |
|
- type: map_at_5 |
|
value: 23.247999999999998 |
|
- type: mrr_at_1 |
|
value: 20.274 |
|
- type: mrr_at_10 |
|
value: 28.866000000000003 |
|
- type: mrr_at_100 |
|
value: 29.889 |
|
- type: mrr_at_1000 |
|
value: 29.957 |
|
- type: mrr_at_3 |
|
value: 26.284999999999997 |
|
- type: mrr_at_5 |
|
value: 27.79 |
|
- type: ndcg_at_1 |
|
value: 20.274 |
|
- type: ndcg_at_10 |
|
value: 29.666999999999998 |
|
- type: ndcg_at_100 |
|
value: 36.095 |
|
- type: ndcg_at_1000 |
|
value: 38.87 |
|
- type: ndcg_at_3 |
|
value: 24.672 |
|
- type: ndcg_at_5 |
|
value: 27.106 |
|
- type: precision_at_1 |
|
value: 20.274 |
|
- type: precision_at_10 |
|
value: 5.5969999999999995 |
|
- type: precision_at_100 |
|
value: 1.04 |
|
- type: precision_at_1000 |
|
value: 0.14100000000000001 |
|
- type: precision_at_3 |
|
value: 12.023 |
|
- type: precision_at_5 |
|
value: 8.98 |
|
- type: recall_at_1 |
|
value: 16.494 |
|
- type: recall_at_10 |
|
value: 41.400999999999996 |
|
- type: recall_at_100 |
|
value: 69.811 |
|
- type: recall_at_1000 |
|
value: 89.422 |
|
- type: recall_at_3 |
|
value: 27.834999999999997 |
|
- type: recall_at_5 |
|
value: 33.774 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.150000000000002 |
|
- type: map_at_10 |
|
value: 36.012 |
|
- type: map_at_100 |
|
value: 37.377 |
|
- type: map_at_1000 |
|
value: 37.497 |
|
- type: map_at_3 |
|
value: 32.712 |
|
- type: map_at_5 |
|
value: 34.475 |
|
- type: mrr_at_1 |
|
value: 32.05 |
|
- type: mrr_at_10 |
|
value: 41.556 |
|
- type: mrr_at_100 |
|
value: 42.451 |
|
- type: mrr_at_1000 |
|
value: 42.498000000000005 |
|
- type: mrr_at_3 |
|
value: 38.659 |
|
- type: mrr_at_5 |
|
value: 40.314 |
|
- type: ndcg_at_1 |
|
value: 32.05 |
|
- type: ndcg_at_10 |
|
value: 42.132 |
|
- type: ndcg_at_100 |
|
value: 48.028999999999996 |
|
- type: ndcg_at_1000 |
|
value: 50.229 |
|
- type: ndcg_at_3 |
|
value: 36.622 |
|
- type: ndcg_at_5 |
|
value: 39.062000000000005 |
|
- type: precision_at_1 |
|
value: 32.05 |
|
- type: precision_at_10 |
|
value: 7.767 |
|
- type: precision_at_100 |
|
value: 1.269 |
|
- type: precision_at_1000 |
|
value: 0.164 |
|
- type: precision_at_3 |
|
value: 17.355999999999998 |
|
- type: precision_at_5 |
|
value: 12.474 |
|
- type: recall_at_1 |
|
value: 26.150000000000002 |
|
- type: recall_at_10 |
|
value: 55.205000000000005 |
|
- type: recall_at_100 |
|
value: 80.2 |
|
- type: recall_at_1000 |
|
value: 94.524 |
|
- type: recall_at_3 |
|
value: 39.322 |
|
- type: recall_at_5 |
|
value: 45.761 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.741 |
|
- type: map_at_10 |
|
value: 33.51 |
|
- type: map_at_100 |
|
value: 34.882999999999996 |
|
- type: map_at_1000 |
|
value: 34.995 |
|
- type: map_at_3 |
|
value: 30.514000000000003 |
|
- type: map_at_5 |
|
value: 32.085 |
|
- type: mrr_at_1 |
|
value: 28.653000000000002 |
|
- type: mrr_at_10 |
|
value: 38.059 |
|
- type: mrr_at_100 |
|
value: 39.050000000000004 |
|
- type: mrr_at_1000 |
|
value: 39.107 |
|
- type: mrr_at_3 |
|
value: 35.445 |
|
- type: mrr_at_5 |
|
value: 36.849 |
|
- type: ndcg_at_1 |
|
value: 28.653000000000002 |
|
- type: ndcg_at_10 |
|
value: 39.186 |
|
- type: ndcg_at_100 |
|
value: 45.301 |
|
- type: ndcg_at_1000 |
|
value: 47.547 |
|
- type: ndcg_at_3 |
|
value: 34.103 |
|
- type: ndcg_at_5 |
|
value: 36.239 |
|
- type: precision_at_1 |
|
value: 28.653000000000002 |
|
- type: precision_at_10 |
|
value: 7.295 |
|
- type: precision_at_100 |
|
value: 1.2189999999999999 |
|
- type: precision_at_1000 |
|
value: 0.159 |
|
- type: precision_at_3 |
|
value: 16.438 |
|
- type: precision_at_5 |
|
value: 11.804 |
|
- type: recall_at_1 |
|
value: 23.741 |
|
- type: recall_at_10 |
|
value: 51.675000000000004 |
|
- type: recall_at_100 |
|
value: 78.13799999999999 |
|
- type: recall_at_1000 |
|
value: 93.12700000000001 |
|
- type: recall_at_3 |
|
value: 37.033 |
|
- type: recall_at_5 |
|
value: 42.793 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.452 |
|
- type: map_at_10 |
|
value: 30.231 |
|
- type: map_at_100 |
|
value: 31.227 |
|
- type: map_at_1000 |
|
value: 31.338 |
|
- type: map_at_3 |
|
value: 28.083000000000002 |
|
- type: map_at_5 |
|
value: 29.125 |
|
- type: mrr_at_1 |
|
value: 25.613000000000003 |
|
- type: mrr_at_10 |
|
value: 32.62 |
|
- type: mrr_at_100 |
|
value: 33.469 |
|
- type: mrr_at_1000 |
|
value: 33.554 |
|
- type: mrr_at_3 |
|
value: 30.368000000000002 |
|
- type: mrr_at_5 |
|
value: 31.502999999999997 |
|
- type: ndcg_at_1 |
|
value: 25.613000000000003 |
|
- type: ndcg_at_10 |
|
value: 34.441 |
|
- type: ndcg_at_100 |
|
value: 39.253 |
|
- type: ndcg_at_1000 |
|
value: 42.105 |
|
- type: ndcg_at_3 |
|
value: 30.183 |
|
- type: ndcg_at_5 |
|
value: 31.917 |
|
- type: precision_at_1 |
|
value: 25.613000000000003 |
|
- type: precision_at_10 |
|
value: 5.367999999999999 |
|
- type: precision_at_100 |
|
value: 0.848 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_3 |
|
value: 12.73 |
|
- type: precision_at_5 |
|
value: 8.773 |
|
- type: recall_at_1 |
|
value: 23.452 |
|
- type: recall_at_10 |
|
value: 45.021 |
|
- type: recall_at_100 |
|
value: 66.563 |
|
- type: recall_at_1000 |
|
value: 87.713 |
|
- type: recall_at_3 |
|
value: 33.433 |
|
- type: recall_at_5 |
|
value: 37.637 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.11 |
|
- type: map_at_10 |
|
value: 22.832 |
|
- type: map_at_100 |
|
value: 23.829 |
|
- type: map_at_1000 |
|
value: 23.959 |
|
- type: map_at_3 |
|
value: 20.66 |
|
- type: map_at_5 |
|
value: 21.851000000000003 |
|
- type: mrr_at_1 |
|
value: 19.408 |
|
- type: mrr_at_10 |
|
value: 26.354 |
|
- type: mrr_at_100 |
|
value: 27.237000000000002 |
|
- type: mrr_at_1000 |
|
value: 27.32 |
|
- type: mrr_at_3 |
|
value: 24.243000000000002 |
|
- type: mrr_at_5 |
|
value: 25.430000000000003 |
|
- type: ndcg_at_1 |
|
value: 19.408 |
|
- type: ndcg_at_10 |
|
value: 27.239 |
|
- type: ndcg_at_100 |
|
value: 32.286 |
|
- type: ndcg_at_1000 |
|
value: 35.498000000000005 |
|
- type: ndcg_at_3 |
|
value: 23.244 |
|
- type: ndcg_at_5 |
|
value: 25.080999999999996 |
|
- type: precision_at_1 |
|
value: 19.408 |
|
- type: precision_at_10 |
|
value: 4.917 |
|
- type: precision_at_100 |
|
value: 0.874 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 10.863 |
|
- type: precision_at_5 |
|
value: 7.887 |
|
- type: recall_at_1 |
|
value: 16.11 |
|
- type: recall_at_10 |
|
value: 37.075 |
|
- type: recall_at_100 |
|
value: 60.251999999999995 |
|
- type: recall_at_1000 |
|
value: 83.38600000000001 |
|
- type: recall_at_3 |
|
value: 25.901999999999997 |
|
- type: recall_at_5 |
|
value: 30.612000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.941 |
|
- type: map_at_10 |
|
value: 33.711999999999996 |
|
- type: map_at_100 |
|
value: 34.926 |
|
- type: map_at_1000 |
|
value: 35.05 |
|
- type: map_at_3 |
|
value: 31.075000000000003 |
|
- type: map_at_5 |
|
value: 32.611000000000004 |
|
- type: mrr_at_1 |
|
value: 30.784 |
|
- type: mrr_at_10 |
|
value: 38.079 |
|
- type: mrr_at_100 |
|
value: 39.018 |
|
- type: mrr_at_1000 |
|
value: 39.09 |
|
- type: mrr_at_3 |
|
value: 35.603 |
|
- type: mrr_at_5 |
|
value: 36.988 |
|
- type: ndcg_at_1 |
|
value: 30.784 |
|
- type: ndcg_at_10 |
|
value: 38.586 |
|
- type: ndcg_at_100 |
|
value: 44.205 |
|
- type: ndcg_at_1000 |
|
value: 46.916000000000004 |
|
- type: ndcg_at_3 |
|
value: 33.899 |
|
- type: ndcg_at_5 |
|
value: 36.11 |
|
- type: precision_at_1 |
|
value: 30.784 |
|
- type: precision_at_10 |
|
value: 6.409 |
|
- type: precision_at_100 |
|
value: 1.034 |
|
- type: precision_at_1000 |
|
value: 0.13799999999999998 |
|
- type: precision_at_3 |
|
value: 15.112 |
|
- type: precision_at_5 |
|
value: 10.728 |
|
- type: recall_at_1 |
|
value: 25.941 |
|
- type: recall_at_10 |
|
value: 49.242999999999995 |
|
- type: recall_at_100 |
|
value: 73.85000000000001 |
|
- type: recall_at_1000 |
|
value: 92.782 |
|
- type: recall_at_3 |
|
value: 36.204 |
|
- type: recall_at_5 |
|
value: 41.908 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.401999999999997 |
|
- type: map_at_10 |
|
value: 33.195 |
|
- type: map_at_100 |
|
value: 34.699999999999996 |
|
- type: map_at_1000 |
|
value: 34.946 |
|
- type: map_at_3 |
|
value: 30.570999999999998 |
|
- type: map_at_5 |
|
value: 32.0 |
|
- type: mrr_at_1 |
|
value: 28.656 |
|
- type: mrr_at_10 |
|
value: 37.039 |
|
- type: mrr_at_100 |
|
value: 38.049 |
|
- type: mrr_at_1000 |
|
value: 38.108 |
|
- type: mrr_at_3 |
|
value: 34.717 |
|
- type: mrr_at_5 |
|
value: 36.07 |
|
- type: ndcg_at_1 |
|
value: 28.656 |
|
- type: ndcg_at_10 |
|
value: 38.557 |
|
- type: ndcg_at_100 |
|
value: 44.511 |
|
- type: ndcg_at_1000 |
|
value: 47.346 |
|
- type: ndcg_at_3 |
|
value: 34.235 |
|
- type: ndcg_at_5 |
|
value: 36.260999999999996 |
|
- type: precision_at_1 |
|
value: 28.656 |
|
- type: precision_at_10 |
|
value: 7.312 |
|
- type: precision_at_100 |
|
value: 1.451 |
|
- type: precision_at_1000 |
|
value: 0.242 |
|
- type: precision_at_3 |
|
value: 15.942 |
|
- type: precision_at_5 |
|
value: 11.66 |
|
- type: recall_at_1 |
|
value: 24.401999999999997 |
|
- type: recall_at_10 |
|
value: 48.791000000000004 |
|
- type: recall_at_100 |
|
value: 76.211 |
|
- type: recall_at_1000 |
|
value: 93.92 |
|
- type: recall_at_3 |
|
value: 36.975 |
|
- type: recall_at_5 |
|
value: 42.01 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.07 |
|
- type: map_at_10 |
|
value: 26.608999999999998 |
|
- type: map_at_100 |
|
value: 27.625 |
|
- type: map_at_1000 |
|
value: 27.743000000000002 |
|
- type: map_at_3 |
|
value: 24.532999999999998 |
|
- type: map_at_5 |
|
value: 25.671 |
|
- type: mrr_at_1 |
|
value: 20.518 |
|
- type: mrr_at_10 |
|
value: 28.541 |
|
- type: mrr_at_100 |
|
value: 29.453000000000003 |
|
- type: mrr_at_1000 |
|
value: 29.536 |
|
- type: mrr_at_3 |
|
value: 26.71 |
|
- type: mrr_at_5 |
|
value: 27.708 |
|
- type: ndcg_at_1 |
|
value: 20.518 |
|
- type: ndcg_at_10 |
|
value: 30.855 |
|
- type: ndcg_at_100 |
|
value: 35.973 |
|
- type: ndcg_at_1000 |
|
value: 38.827 |
|
- type: ndcg_at_3 |
|
value: 26.868 |
|
- type: ndcg_at_5 |
|
value: 28.74 |
|
- type: precision_at_1 |
|
value: 20.518 |
|
- type: precision_at_10 |
|
value: 4.843 |
|
- type: precision_at_100 |
|
value: 0.799 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 11.645 |
|
- type: precision_at_5 |
|
value: 8.133 |
|
- type: recall_at_1 |
|
value: 19.07 |
|
- type: recall_at_10 |
|
value: 41.925000000000004 |
|
- type: recall_at_100 |
|
value: 65.68 |
|
- type: recall_at_1000 |
|
value: 86.713 |
|
- type: recall_at_3 |
|
value: 31.251 |
|
- type: recall_at_5 |
|
value: 35.653 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.762 |
|
- type: map_at_10 |
|
value: 32.412 |
|
- type: map_at_100 |
|
value: 34.506 |
|
- type: map_at_1000 |
|
value: 34.678 |
|
- type: map_at_3 |
|
value: 27.594 |
|
- type: map_at_5 |
|
value: 30.128 |
|
- type: mrr_at_1 |
|
value: 42.345 |
|
- type: mrr_at_10 |
|
value: 54.443 |
|
- type: mrr_at_100 |
|
value: 55.05799999999999 |
|
- type: mrr_at_1000 |
|
value: 55.076 |
|
- type: mrr_at_3 |
|
value: 51.553000000000004 |
|
- type: mrr_at_5 |
|
value: 53.269 |
|
- type: ndcg_at_1 |
|
value: 42.345 |
|
- type: ndcg_at_10 |
|
value: 42.304 |
|
- type: ndcg_at_100 |
|
value: 49.425000000000004 |
|
- type: ndcg_at_1000 |
|
value: 52.123 |
|
- type: ndcg_at_3 |
|
value: 36.271 |
|
- type: ndcg_at_5 |
|
value: 38.216 |
|
- type: precision_at_1 |
|
value: 42.345 |
|
- type: precision_at_10 |
|
value: 12.808 |
|
- type: precision_at_100 |
|
value: 2.062 |
|
- type: precision_at_1000 |
|
value: 0.258 |
|
- type: precision_at_3 |
|
value: 26.840000000000003 |
|
- type: precision_at_5 |
|
value: 20.052 |
|
- type: recall_at_1 |
|
value: 18.762 |
|
- type: recall_at_10 |
|
value: 47.976 |
|
- type: recall_at_100 |
|
value: 71.86 |
|
- type: recall_at_1000 |
|
value: 86.61999999999999 |
|
- type: recall_at_3 |
|
value: 32.708999999999996 |
|
- type: recall_at_5 |
|
value: 39.151 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.685 |
|
- type: map_at_10 |
|
value: 21.65 |
|
- type: map_at_100 |
|
value: 30.952 |
|
- type: map_at_1000 |
|
value: 33.049 |
|
- type: map_at_3 |
|
value: 14.953 |
|
- type: map_at_5 |
|
value: 17.592 |
|
- type: mrr_at_1 |
|
value: 72.0 |
|
- type: mrr_at_10 |
|
value: 78.054 |
|
- type: mrr_at_100 |
|
value: 78.41900000000001 |
|
- type: mrr_at_1000 |
|
value: 78.425 |
|
- type: mrr_at_3 |
|
value: 76.5 |
|
- type: mrr_at_5 |
|
value: 77.28699999999999 |
|
- type: ndcg_at_1 |
|
value: 61.25000000000001 |
|
- type: ndcg_at_10 |
|
value: 46.306000000000004 |
|
- type: ndcg_at_100 |
|
value: 50.867 |
|
- type: ndcg_at_1000 |
|
value: 58.533 |
|
- type: ndcg_at_3 |
|
value: 50.857 |
|
- type: ndcg_at_5 |
|
value: 48.283 |
|
- type: precision_at_1 |
|
value: 72.0 |
|
- type: precision_at_10 |
|
value: 37.3 |
|
- type: precision_at_100 |
|
value: 11.95 |
|
- type: precision_at_1000 |
|
value: 2.528 |
|
- type: precision_at_3 |
|
value: 53.583000000000006 |
|
- type: precision_at_5 |
|
value: 46.6 |
|
- type: recall_at_1 |
|
value: 9.685 |
|
- type: recall_at_10 |
|
value: 27.474999999999998 |
|
- type: recall_at_100 |
|
value: 56.825 |
|
- type: recall_at_1000 |
|
value: 81.792 |
|
- type: recall_at_3 |
|
value: 15.939 |
|
- type: recall_at_5 |
|
value: 19.853 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 62.805000000000014 |
|
- type: f1 |
|
value: 56.401757250989384 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 83.734 |
|
- type: map_at_10 |
|
value: 90.089 |
|
- type: map_at_100 |
|
value: 90.274 |
|
- type: map_at_1000 |
|
value: 90.286 |
|
- type: map_at_3 |
|
value: 89.281 |
|
- type: map_at_5 |
|
value: 89.774 |
|
- type: mrr_at_1 |
|
value: 90.039 |
|
- type: mrr_at_10 |
|
value: 94.218 |
|
- type: mrr_at_100 |
|
value: 94.24 |
|
- type: mrr_at_1000 |
|
value: 94.24 |
|
- type: mrr_at_3 |
|
value: 93.979 |
|
- type: mrr_at_5 |
|
value: 94.137 |
|
- type: ndcg_at_1 |
|
value: 90.039 |
|
- type: ndcg_at_10 |
|
value: 92.597 |
|
- type: ndcg_at_100 |
|
value: 93.147 |
|
- type: ndcg_at_1000 |
|
value: 93.325 |
|
- type: ndcg_at_3 |
|
value: 91.64999999999999 |
|
- type: ndcg_at_5 |
|
value: 92.137 |
|
- type: precision_at_1 |
|
value: 90.039 |
|
- type: precision_at_10 |
|
value: 10.809000000000001 |
|
- type: precision_at_100 |
|
value: 1.133 |
|
- type: precision_at_1000 |
|
value: 0.116 |
|
- type: precision_at_3 |
|
value: 34.338 |
|
- type: precision_at_5 |
|
value: 21.089 |
|
- type: recall_at_1 |
|
value: 83.734 |
|
- type: recall_at_10 |
|
value: 96.161 |
|
- type: recall_at_100 |
|
value: 98.137 |
|
- type: recall_at_1000 |
|
value: 99.182 |
|
- type: recall_at_3 |
|
value: 93.551 |
|
- type: recall_at_5 |
|
value: 94.878 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.529999999999998 |
|
- type: map_at_10 |
|
value: 37.229 |
|
- type: map_at_100 |
|
value: 39.333 |
|
- type: map_at_1000 |
|
value: 39.491 |
|
- type: map_at_3 |
|
value: 32.177 |
|
- type: map_at_5 |
|
value: 35.077999999999996 |
|
- type: mrr_at_1 |
|
value: 45.678999999999995 |
|
- type: mrr_at_10 |
|
value: 53.952 |
|
- type: mrr_at_100 |
|
value: 54.727000000000004 |
|
- type: mrr_at_1000 |
|
value: 54.761 |
|
- type: mrr_at_3 |
|
value: 51.568999999999996 |
|
- type: mrr_at_5 |
|
value: 52.973000000000006 |
|
- type: ndcg_at_1 |
|
value: 45.678999999999995 |
|
- type: ndcg_at_10 |
|
value: 45.297 |
|
- type: ndcg_at_100 |
|
value: 52.516 |
|
- type: ndcg_at_1000 |
|
value: 55.16 |
|
- type: ndcg_at_3 |
|
value: 40.569 |
|
- type: ndcg_at_5 |
|
value: 42.49 |
|
- type: precision_at_1 |
|
value: 45.678999999999995 |
|
- type: precision_at_10 |
|
value: 12.269 |
|
- type: precision_at_100 |
|
value: 1.9709999999999999 |
|
- type: precision_at_1000 |
|
value: 0.244 |
|
- type: precision_at_3 |
|
value: 25.72 |
|
- type: precision_at_5 |
|
value: 19.66 |
|
- type: recall_at_1 |
|
value: 24.529999999999998 |
|
- type: recall_at_10 |
|
value: 51.983999999999995 |
|
- type: recall_at_100 |
|
value: 78.217 |
|
- type: recall_at_1000 |
|
value: 94.104 |
|
- type: recall_at_3 |
|
value: 36.449999999999996 |
|
- type: recall_at_5 |
|
value: 43.336999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 41.519 |
|
- type: map_at_10 |
|
value: 64.705 |
|
- type: map_at_100 |
|
value: 65.554 |
|
- type: map_at_1000 |
|
value: 65.613 |
|
- type: map_at_3 |
|
value: 61.478 |
|
- type: map_at_5 |
|
value: 63.55800000000001 |
|
- type: mrr_at_1 |
|
value: 83.038 |
|
- type: mrr_at_10 |
|
value: 87.82900000000001 |
|
- type: mrr_at_100 |
|
value: 87.96000000000001 |
|
- type: mrr_at_1000 |
|
value: 87.96300000000001 |
|
- type: mrr_at_3 |
|
value: 87.047 |
|
- type: mrr_at_5 |
|
value: 87.546 |
|
- type: ndcg_at_1 |
|
value: 83.038 |
|
- type: ndcg_at_10 |
|
value: 72.928 |
|
- type: ndcg_at_100 |
|
value: 75.778 |
|
- type: ndcg_at_1000 |
|
value: 76.866 |
|
- type: ndcg_at_3 |
|
value: 68.46600000000001 |
|
- type: ndcg_at_5 |
|
value: 71.036 |
|
- type: precision_at_1 |
|
value: 83.038 |
|
- type: precision_at_10 |
|
value: 15.040999999999999 |
|
- type: precision_at_100 |
|
value: 1.7260000000000002 |
|
- type: precision_at_1000 |
|
value: 0.187 |
|
- type: precision_at_3 |
|
value: 43.597 |
|
- type: precision_at_5 |
|
value: 28.188999999999997 |
|
- type: recall_at_1 |
|
value: 41.519 |
|
- type: recall_at_10 |
|
value: 75.20599999999999 |
|
- type: recall_at_100 |
|
value: 86.3 |
|
- type: recall_at_1000 |
|
value: 93.437 |
|
- type: recall_at_3 |
|
value: 65.39500000000001 |
|
- type: recall_at_5 |
|
value: 70.473 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 96.0428 |
|
- type: ap |
|
value: 94.48278082595033 |
|
- type: f1 |
|
value: 96.0409595432081 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.496000000000002 |
|
- type: map_at_10 |
|
value: 33.82 |
|
- type: map_at_100 |
|
value: 35.013 |
|
- type: map_at_1000 |
|
value: 35.063 |
|
- type: map_at_3 |
|
value: 29.910999999999998 |
|
- type: map_at_5 |
|
value: 32.086 |
|
- type: mrr_at_1 |
|
value: 22.092 |
|
- type: mrr_at_10 |
|
value: 34.404 |
|
- type: mrr_at_100 |
|
value: 35.534 |
|
- type: mrr_at_1000 |
|
value: 35.577999999999996 |
|
- type: mrr_at_3 |
|
value: 30.544 |
|
- type: mrr_at_5 |
|
value: 32.711 |
|
- type: ndcg_at_1 |
|
value: 22.092 |
|
- type: ndcg_at_10 |
|
value: 40.877 |
|
- type: ndcg_at_100 |
|
value: 46.619 |
|
- type: ndcg_at_1000 |
|
value: 47.823 |
|
- type: ndcg_at_3 |
|
value: 32.861000000000004 |
|
- type: ndcg_at_5 |
|
value: 36.769 |
|
- type: precision_at_1 |
|
value: 22.092 |
|
- type: precision_at_10 |
|
value: 6.54 |
|
- type: precision_at_100 |
|
value: 0.943 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 14.069 |
|
- type: precision_at_5 |
|
value: 10.424 |
|
- type: recall_at_1 |
|
value: 21.496000000000002 |
|
- type: recall_at_10 |
|
value: 62.67 |
|
- type: recall_at_100 |
|
value: 89.24499999999999 |
|
- type: recall_at_1000 |
|
value: 98.312 |
|
- type: recall_at_3 |
|
value: 40.796 |
|
- type: recall_at_5 |
|
value: 50.21600000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 95.74555403556772 |
|
- type: f1 |
|
value: 95.61381879323093 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 85.82763337893297 |
|
- type: f1 |
|
value: 63.17139719465236 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 78.51714862138535 |
|
- type: f1 |
|
value: 76.3995118440293 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 80.03698722259583 |
|
- type: f1 |
|
value: 79.36511484240766 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 38.68901889835701 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 38.0740589898848 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 33.41312482460189 |
|
- type: mrr |
|
value: 34.713530863302495 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.232 |
|
- type: map_at_10 |
|
value: 13.442000000000002 |
|
- type: map_at_100 |
|
value: 17.443 |
|
- type: map_at_1000 |
|
value: 19.1 |
|
- type: map_at_3 |
|
value: 9.794 |
|
- type: map_at_5 |
|
value: 11.375 |
|
- type: mrr_at_1 |
|
value: 50.15500000000001 |
|
- type: mrr_at_10 |
|
value: 58.628 |
|
- type: mrr_at_100 |
|
value: 59.077 |
|
- type: mrr_at_1000 |
|
value: 59.119 |
|
- type: mrr_at_3 |
|
value: 56.914 |
|
- type: mrr_at_5 |
|
value: 57.921 |
|
- type: ndcg_at_1 |
|
value: 48.762 |
|
- type: ndcg_at_10 |
|
value: 37.203 |
|
- type: ndcg_at_100 |
|
value: 34.556 |
|
- type: ndcg_at_1000 |
|
value: 43.601 |
|
- type: ndcg_at_3 |
|
value: 43.004 |
|
- type: ndcg_at_5 |
|
value: 40.181 |
|
- type: precision_at_1 |
|
value: 50.15500000000001 |
|
- type: precision_at_10 |
|
value: 27.276 |
|
- type: precision_at_100 |
|
value: 8.981 |
|
- type: precision_at_1000 |
|
value: 2.228 |
|
- type: precision_at_3 |
|
value: 39.628 |
|
- type: precision_at_5 |
|
value: 33.808 |
|
- type: recall_at_1 |
|
value: 6.232 |
|
- type: recall_at_10 |
|
value: 18.137 |
|
- type: recall_at_100 |
|
value: 36.101 |
|
- type: recall_at_1000 |
|
value: 68.733 |
|
- type: recall_at_3 |
|
value: 10.978 |
|
- type: recall_at_5 |
|
value: 13.718 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.545 |
|
- type: map_at_10 |
|
value: 52.083 |
|
- type: map_at_100 |
|
value: 52.954 |
|
- type: map_at_1000 |
|
value: 52.96999999999999 |
|
- type: map_at_3 |
|
value: 47.508 |
|
- type: map_at_5 |
|
value: 50.265 |
|
- type: mrr_at_1 |
|
value: 40.122 |
|
- type: mrr_at_10 |
|
value: 54.567 |
|
- type: mrr_at_100 |
|
value: 55.19199999999999 |
|
- type: mrr_at_1000 |
|
value: 55.204 |
|
- type: mrr_at_3 |
|
value: 51.043000000000006 |
|
- type: mrr_at_5 |
|
value: 53.233 |
|
- type: ndcg_at_1 |
|
value: 40.122 |
|
- type: ndcg_at_10 |
|
value: 60.012 |
|
- type: ndcg_at_100 |
|
value: 63.562 |
|
- type: ndcg_at_1000 |
|
value: 63.94 |
|
- type: ndcg_at_3 |
|
value: 51.681 |
|
- type: ndcg_at_5 |
|
value: 56.154 |
|
- type: precision_at_1 |
|
value: 40.122 |
|
- type: precision_at_10 |
|
value: 9.774 |
|
- type: precision_at_100 |
|
value: 1.176 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 23.426 |
|
- type: precision_at_5 |
|
value: 16.686 |
|
- type: recall_at_1 |
|
value: 35.545 |
|
- type: recall_at_10 |
|
value: 81.557 |
|
- type: recall_at_100 |
|
value: 96.729 |
|
- type: recall_at_1000 |
|
value: 99.541 |
|
- type: recall_at_3 |
|
value: 60.185 |
|
- type: recall_at_5 |
|
value: 70.411 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 68.908 |
|
- type: map_at_10 |
|
value: 83.19 |
|
- type: map_at_100 |
|
value: 83.842 |
|
- type: map_at_1000 |
|
value: 83.858 |
|
- type: map_at_3 |
|
value: 80.167 |
|
- type: map_at_5 |
|
value: 82.053 |
|
- type: mrr_at_1 |
|
value: 79.46 |
|
- type: mrr_at_10 |
|
value: 86.256 |
|
- type: mrr_at_100 |
|
value: 86.37 |
|
- type: mrr_at_1000 |
|
value: 86.371 |
|
- type: mrr_at_3 |
|
value: 85.177 |
|
- type: mrr_at_5 |
|
value: 85.908 |
|
- type: ndcg_at_1 |
|
value: 79.5 |
|
- type: ndcg_at_10 |
|
value: 87.244 |
|
- type: ndcg_at_100 |
|
value: 88.532 |
|
- type: ndcg_at_1000 |
|
value: 88.626 |
|
- type: ndcg_at_3 |
|
value: 84.161 |
|
- type: ndcg_at_5 |
|
value: 85.835 |
|
- type: precision_at_1 |
|
value: 79.5 |
|
- type: precision_at_10 |
|
value: 13.339 |
|
- type: precision_at_100 |
|
value: 1.53 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 36.97 |
|
- type: precision_at_5 |
|
value: 24.384 |
|
- type: recall_at_1 |
|
value: 68.908 |
|
- type: recall_at_10 |
|
value: 95.179 |
|
- type: recall_at_100 |
|
value: 99.579 |
|
- type: recall_at_1000 |
|
value: 99.964 |
|
- type: recall_at_3 |
|
value: 86.424 |
|
- type: recall_at_5 |
|
value: 91.065 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 65.17897847862794 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 66.22194961632586 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.668 |
|
- type: map_at_10 |
|
value: 13.921 |
|
- type: map_at_100 |
|
value: 16.391 |
|
- type: map_at_1000 |
|
value: 16.749 |
|
- type: map_at_3 |
|
value: 10.001999999999999 |
|
- type: map_at_5 |
|
value: 11.974 |
|
- type: mrr_at_1 |
|
value: 27.800000000000004 |
|
- type: mrr_at_10 |
|
value: 39.290000000000006 |
|
- type: mrr_at_100 |
|
value: 40.313 |
|
- type: mrr_at_1000 |
|
value: 40.355999999999995 |
|
- type: mrr_at_3 |
|
value: 35.667 |
|
- type: mrr_at_5 |
|
value: 37.742 |
|
- type: ndcg_at_1 |
|
value: 27.800000000000004 |
|
- type: ndcg_at_10 |
|
value: 23.172 |
|
- type: ndcg_at_100 |
|
value: 32.307 |
|
- type: ndcg_at_1000 |
|
value: 38.048 |
|
- type: ndcg_at_3 |
|
value: 22.043 |
|
- type: ndcg_at_5 |
|
value: 19.287000000000003 |
|
- type: precision_at_1 |
|
value: 27.800000000000004 |
|
- type: precision_at_10 |
|
value: 11.95 |
|
- type: precision_at_100 |
|
value: 2.5260000000000002 |
|
- type: precision_at_1000 |
|
value: 0.38999999999999996 |
|
- type: precision_at_3 |
|
value: 20.433 |
|
- type: precision_at_5 |
|
value: 16.84 |
|
- type: recall_at_1 |
|
value: 5.668 |
|
- type: recall_at_10 |
|
value: 24.22 |
|
- type: recall_at_100 |
|
value: 51.217 |
|
- type: recall_at_1000 |
|
value: 79.10000000000001 |
|
- type: recall_at_3 |
|
value: 12.443 |
|
- type: recall_at_5 |
|
value: 17.068 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.83535239748218 |
|
- type: cos_sim_spearman |
|
value: 73.98553311584509 |
|
- type: euclidean_pearson |
|
value: 79.57336200069007 |
|
- type: euclidean_spearman |
|
value: 73.98553926018461 |
|
- type: manhattan_pearson |
|
value: 79.02277757114132 |
|
- type: manhattan_spearman |
|
value: 73.52350678760683 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.99055838690317 |
|
- type: cos_sim_spearman |
|
value: 72.05290668592296 |
|
- type: euclidean_pearson |
|
value: 81.7130610313565 |
|
- type: euclidean_spearman |
|
value: 72.0529066787229 |
|
- type: manhattan_pearson |
|
value: 82.09213883730894 |
|
- type: manhattan_spearman |
|
value: 72.5171577483134 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.4685161191763 |
|
- type: cos_sim_spearman |
|
value: 84.4847436140129 |
|
- type: euclidean_pearson |
|
value: 84.05016757016948 |
|
- type: euclidean_spearman |
|
value: 84.48474353891532 |
|
- type: manhattan_pearson |
|
value: 83.83064062713048 |
|
- type: manhattan_spearman |
|
value: 84.30431591842805 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.00171021092486 |
|
- type: cos_sim_spearman |
|
value: 77.91329577609622 |
|
- type: euclidean_pearson |
|
value: 81.49758593915315 |
|
- type: euclidean_spearman |
|
value: 77.91329577609622 |
|
- type: manhattan_pearson |
|
value: 81.23255996803785 |
|
- type: manhattan_spearman |
|
value: 77.80027024941825 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.62608607472492 |
|
- type: cos_sim_spearman |
|
value: 87.62293916855751 |
|
- type: euclidean_pearson |
|
value: 87.04313886714989 |
|
- type: euclidean_spearman |
|
value: 87.62293907119869 |
|
- type: manhattan_pearson |
|
value: 86.97266321040769 |
|
- type: manhattan_spearman |
|
value: 87.61807042381702 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.8012095789289 |
|
- type: cos_sim_spearman |
|
value: 81.91868918081325 |
|
- type: euclidean_pearson |
|
value: 81.2267973811213 |
|
- type: euclidean_spearman |
|
value: 81.91868918081325 |
|
- type: manhattan_pearson |
|
value: 81.0173457901168 |
|
- type: manhattan_spearman |
|
value: 81.79743115887055 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.39698537303725 |
|
- type: cos_sim_spearman |
|
value: 88.78668529808967 |
|
- type: euclidean_pearson |
|
value: 88.78863351718252 |
|
- type: euclidean_spearman |
|
value: 88.78668529808967 |
|
- type: manhattan_pearson |
|
value: 88.41678215762478 |
|
- type: manhattan_spearman |
|
value: 88.3827998418763 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.49024974161408 |
|
- type: cos_sim_spearman |
|
value: 69.19917146180619 |
|
- type: euclidean_pearson |
|
value: 70.48882819806336 |
|
- type: euclidean_spearman |
|
value: 69.19917146180619 |
|
- type: manhattan_pearson |
|
value: 70.86827961779932 |
|
- type: manhattan_spearman |
|
value: 69.38456983992613 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.31376078795105 |
|
- type: cos_sim_spearman |
|
value: 83.3985199217591 |
|
- type: euclidean_pearson |
|
value: 84.06630133719332 |
|
- type: euclidean_spearman |
|
value: 83.3985199217591 |
|
- type: manhattan_pearson |
|
value: 83.7896654474364 |
|
- type: manhattan_spearman |
|
value: 83.1885039212299 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 85.83161002188668 |
|
- type: mrr |
|
value: 96.19253114351153 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 48.132999999999996 |
|
- type: map_at_10 |
|
value: 58.541 |
|
- type: map_at_100 |
|
value: 59.34 |
|
- type: map_at_1000 |
|
value: 59.367999999999995 |
|
- type: map_at_3 |
|
value: 55.191 |
|
- type: map_at_5 |
|
value: 57.084 |
|
- type: mrr_at_1 |
|
value: 51.0 |
|
- type: mrr_at_10 |
|
value: 59.858 |
|
- type: mrr_at_100 |
|
value: 60.474000000000004 |
|
- type: mrr_at_1000 |
|
value: 60.501000000000005 |
|
- type: mrr_at_3 |
|
value: 57.111000000000004 |
|
- type: mrr_at_5 |
|
value: 58.694 |
|
- type: ndcg_at_1 |
|
value: 51.0 |
|
- type: ndcg_at_10 |
|
value: 63.817 |
|
- type: ndcg_at_100 |
|
value: 67.229 |
|
- type: ndcg_at_1000 |
|
value: 67.94 |
|
- type: ndcg_at_3 |
|
value: 57.896 |
|
- type: ndcg_at_5 |
|
value: 60.785999999999994 |
|
- type: precision_at_1 |
|
value: 51.0 |
|
- type: precision_at_10 |
|
value: 8.933 |
|
- type: precision_at_100 |
|
value: 1.0699999999999998 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 23.111 |
|
- type: precision_at_5 |
|
value: 15.733 |
|
- type: recall_at_1 |
|
value: 48.132999999999996 |
|
- type: recall_at_10 |
|
value: 78.922 |
|
- type: recall_at_100 |
|
value: 94.167 |
|
- type: recall_at_1000 |
|
value: 99.667 |
|
- type: recall_at_3 |
|
value: 62.806 |
|
- type: recall_at_5 |
|
value: 70.078 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.88415841584158 |
|
- type: cos_sim_ap |
|
value: 97.72557886493401 |
|
- type: cos_sim_f1 |
|
value: 94.1294530858003 |
|
- type: cos_sim_precision |
|
value: 94.46122860020141 |
|
- type: cos_sim_recall |
|
value: 93.8 |
|
- type: dot_accuracy |
|
value: 99.88415841584158 |
|
- type: dot_ap |
|
value: 97.72557439066108 |
|
- type: dot_f1 |
|
value: 94.1294530858003 |
|
- type: dot_precision |
|
value: 94.46122860020141 |
|
- type: dot_recall |
|
value: 93.8 |
|
- type: euclidean_accuracy |
|
value: 99.88415841584158 |
|
- type: euclidean_ap |
|
value: 97.72557439066108 |
|
- type: euclidean_f1 |
|
value: 94.1294530858003 |
|
- type: euclidean_precision |
|
value: 94.46122860020141 |
|
- type: euclidean_recall |
|
value: 93.8 |
|
- type: manhattan_accuracy |
|
value: 99.88514851485148 |
|
- type: manhattan_ap |
|
value: 97.73324334051959 |
|
- type: manhattan_f1 |
|
value: 94.1825476429288 |
|
- type: manhattan_precision |
|
value: 94.46680080482898 |
|
- type: manhattan_recall |
|
value: 93.89999999999999 |
|
- type: max_accuracy |
|
value: 99.88514851485148 |
|
- type: max_ap |
|
value: 97.73324334051959 |
|
- type: max_f1 |
|
value: 94.1825476429288 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 72.8168026381278 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 44.30948635130784 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 54.11268548719803 |
|
- type: mrr |
|
value: 55.08079747050335 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.82885852096243 |
|
- type: cos_sim_spearman |
|
value: 30.800770979226076 |
|
- type: dot_pearson |
|
value: 30.82885608827704 |
|
- type: dot_spearman |
|
value: 30.800770979226076 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.20400000000000001 |
|
- type: map_at_10 |
|
value: 1.27 |
|
- type: map_at_100 |
|
value: 7.993 |
|
- type: map_at_1000 |
|
value: 20.934 |
|
- type: map_at_3 |
|
value: 0.469 |
|
- type: map_at_5 |
|
value: 0.716 |
|
- type: mrr_at_1 |
|
value: 76.0 |
|
- type: mrr_at_10 |
|
value: 84.967 |
|
- type: mrr_at_100 |
|
value: 84.967 |
|
- type: mrr_at_1000 |
|
value: 84.967 |
|
- type: mrr_at_3 |
|
value: 83.667 |
|
- type: mrr_at_5 |
|
value: 84.967 |
|
- type: ndcg_at_1 |
|
value: 69.0 |
|
- type: ndcg_at_10 |
|
value: 59.243 |
|
- type: ndcg_at_100 |
|
value: 48.784 |
|
- type: ndcg_at_1000 |
|
value: 46.966 |
|
- type: ndcg_at_3 |
|
value: 64.14 |
|
- type: ndcg_at_5 |
|
value: 61.60600000000001 |
|
- type: precision_at_1 |
|
value: 76.0 |
|
- type: precision_at_10 |
|
value: 62.6 |
|
- type: precision_at_100 |
|
value: 50.18 |
|
- type: precision_at_1000 |
|
value: 21.026 |
|
- type: precision_at_3 |
|
value: 68.667 |
|
- type: precision_at_5 |
|
value: 66.0 |
|
- type: recall_at_1 |
|
value: 0.20400000000000001 |
|
- type: recall_at_10 |
|
value: 1.582 |
|
- type: recall_at_100 |
|
value: 11.988 |
|
- type: recall_at_1000 |
|
value: 44.994 |
|
- type: recall_at_3 |
|
value: 0.515 |
|
- type: recall_at_5 |
|
value: 0.844 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.3009999999999997 |
|
- type: map_at_10 |
|
value: 11.566 |
|
- type: map_at_100 |
|
value: 17.645 |
|
- type: map_at_1000 |
|
value: 19.206 |
|
- type: map_at_3 |
|
value: 6.986000000000001 |
|
- type: map_at_5 |
|
value: 8.716 |
|
- type: mrr_at_1 |
|
value: 42.857 |
|
- type: mrr_at_10 |
|
value: 58.287 |
|
- type: mrr_at_100 |
|
value: 59.111000000000004 |
|
- type: mrr_at_1000 |
|
value: 59.111000000000004 |
|
- type: mrr_at_3 |
|
value: 55.102 |
|
- type: mrr_at_5 |
|
value: 57.449 |
|
- type: ndcg_at_1 |
|
value: 39.796 |
|
- type: ndcg_at_10 |
|
value: 29.059 |
|
- type: ndcg_at_100 |
|
value: 40.629 |
|
- type: ndcg_at_1000 |
|
value: 51.446000000000005 |
|
- type: ndcg_at_3 |
|
value: 36.254999999999995 |
|
- type: ndcg_at_5 |
|
value: 32.216 |
|
- type: precision_at_1 |
|
value: 42.857 |
|
- type: precision_at_10 |
|
value: 23.469 |
|
- type: precision_at_100 |
|
value: 8.041 |
|
- type: precision_at_1000 |
|
value: 1.551 |
|
- type: precision_at_3 |
|
value: 36.735 |
|
- type: precision_at_5 |
|
value: 30.203999999999997 |
|
- type: recall_at_1 |
|
value: 3.3009999999999997 |
|
- type: recall_at_10 |
|
value: 17.267 |
|
- type: recall_at_100 |
|
value: 49.36 |
|
- type: recall_at_1000 |
|
value: 83.673 |
|
- type: recall_at_3 |
|
value: 8.049000000000001 |
|
- type: recall_at_5 |
|
value: 11.379999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 88.7576 |
|
- type: ap |
|
value: 35.52110634325751 |
|
- type: f1 |
|
value: 74.14476947482417 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 73.52009054895304 |
|
- type: f1 |
|
value: 73.81407409876577 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 54.35358706465052 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 83.65619598259522 |
|
- type: cos_sim_ap |
|
value: 65.824087818991 |
|
- type: cos_sim_f1 |
|
value: 61.952620244077536 |
|
- type: cos_sim_precision |
|
value: 56.676882661996494 |
|
- type: cos_sim_recall |
|
value: 68.311345646438 |
|
- type: dot_accuracy |
|
value: 83.65619598259522 |
|
- type: dot_ap |
|
value: 65.82406256999921 |
|
- type: dot_f1 |
|
value: 61.952620244077536 |
|
- type: dot_precision |
|
value: 56.676882661996494 |
|
- type: dot_recall |
|
value: 68.311345646438 |
|
- type: euclidean_accuracy |
|
value: 83.65619598259522 |
|
- type: euclidean_ap |
|
value: 65.82409143427542 |
|
- type: euclidean_f1 |
|
value: 61.952620244077536 |
|
- type: euclidean_precision |
|
value: 56.676882661996494 |
|
- type: euclidean_recall |
|
value: 68.311345646438 |
|
- type: manhattan_accuracy |
|
value: 83.4296954163438 |
|
- type: manhattan_ap |
|
value: 65.20662449614932 |
|
- type: manhattan_f1 |
|
value: 61.352885525070946 |
|
- type: manhattan_precision |
|
value: 55.59365623660523 |
|
- type: manhattan_recall |
|
value: 68.44327176781002 |
|
- type: max_accuracy |
|
value: 83.65619598259522 |
|
- type: max_ap |
|
value: 65.82409143427542 |
|
- type: max_f1 |
|
value: 61.952620244077536 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.90119144642372 |
|
- type: cos_sim_ap |
|
value: 84.04753852793387 |
|
- type: cos_sim_f1 |
|
value: 76.27737226277372 |
|
- type: cos_sim_precision |
|
value: 73.86757068667052 |
|
- type: cos_sim_recall |
|
value: 78.84970742223591 |
|
- type: dot_accuracy |
|
value: 87.90119144642372 |
|
- type: dot_ap |
|
value: 84.04753668117337 |
|
- type: dot_f1 |
|
value: 76.27737226277372 |
|
- type: dot_precision |
|
value: 73.86757068667052 |
|
- type: dot_recall |
|
value: 78.84970742223591 |
|
- type: euclidean_accuracy |
|
value: 87.90119144642372 |
|
- type: euclidean_ap |
|
value: 84.04754553468206 |
|
- type: euclidean_f1 |
|
value: 76.27737226277372 |
|
- type: euclidean_precision |
|
value: 73.86757068667052 |
|
- type: euclidean_recall |
|
value: 78.84970742223591 |
|
- type: manhattan_accuracy |
|
value: 87.87014398261343 |
|
- type: manhattan_ap |
|
value: 84.05164646221583 |
|
- type: manhattan_f1 |
|
value: 76.31392706820128 |
|
- type: manhattan_precision |
|
value: 73.91586694566708 |
|
- type: manhattan_recall |
|
value: 78.87280566676932 |
|
- type: max_accuracy |
|
value: 87.90119144642372 |
|
- type: max_ap |
|
value: 84.05164646221583 |
|
- type: max_f1 |
|
value: 76.31392706820128 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: b44c3b011063adb25877c13823db83bb193913c4 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.3123511272669 |
|
- type: cos_sim_spearman |
|
value: 55.73207493107254 |
|
- type: euclidean_pearson |
|
value: 53.95847274621819 |
|
- type: euclidean_spearman |
|
value: 55.73207493107254 |
|
- type: manhattan_pearson |
|
value: 53.720688490931124 |
|
- type: manhattan_spearman |
|
value: 55.453911938689 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 50.787428883419864 |
|
- type: cos_sim_spearman |
|
value: 53.97343607668934 |
|
- type: euclidean_pearson |
|
value: 55.12379889727461 |
|
- type: euclidean_spearman |
|
value: 53.97343945403084 |
|
- type: manhattan_pearson |
|
value: 54.95369694130932 |
|
- type: manhattan_spearman |
|
value: 53.74165246349166 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 53.49 |
|
- type: f1 |
|
value: 51.576550662258434 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 63.78770644319529 |
|
- type: cos_sim_spearman |
|
value: 65.08813140587463 |
|
- type: euclidean_pearson |
|
value: 63.92948559310832 |
|
- type: euclidean_spearman |
|
value: 65.08813486997627 |
|
- type: manhattan_pearson |
|
value: 63.55967028084246 |
|
- type: manhattan_spearman |
|
value: 64.69692694499825 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 |
|
metrics: |
|
- type: v_measure |
|
value: 44.23533333311907 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f |
|
metrics: |
|
- type: v_measure |
|
value: 43.01114481307774 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df |
|
metrics: |
|
- type: map |
|
value: 86.4349853821696 |
|
- type: mrr |
|
value: 88.80150793650795 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: 23d186750531a14a0357ca22cd92d712fd512ea0 |
|
metrics: |
|
- type: map |
|
value: 87.56417400982208 |
|
- type: mrr |
|
value: 89.85813492063491 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.871 |
|
- type: map_at_10 |
|
value: 37.208999999999996 |
|
- type: map_at_100 |
|
value: 38.993 |
|
- type: map_at_1000 |
|
value: 39.122 |
|
- type: map_at_3 |
|
value: 33.2 |
|
- type: map_at_5 |
|
value: 35.33 |
|
- type: mrr_at_1 |
|
value: 37.884 |
|
- type: mrr_at_10 |
|
value: 46.189 |
|
- type: mrr_at_100 |
|
value: 47.147 |
|
- type: mrr_at_1000 |
|
value: 47.195 |
|
- type: mrr_at_3 |
|
value: 43.728 |
|
- type: mrr_at_5 |
|
value: 44.994 |
|
- type: ndcg_at_1 |
|
value: 37.884 |
|
- type: ndcg_at_10 |
|
value: 43.878 |
|
- type: ndcg_at_100 |
|
value: 51.002 |
|
- type: ndcg_at_1000 |
|
value: 53.161 |
|
- type: ndcg_at_3 |
|
value: 38.729 |
|
- type: ndcg_at_5 |
|
value: 40.628 |
|
- type: precision_at_1 |
|
value: 37.884 |
|
- type: precision_at_10 |
|
value: 9.75 |
|
- type: precision_at_100 |
|
value: 1.558 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 21.964 |
|
- type: precision_at_5 |
|
value: 15.719 |
|
- type: recall_at_1 |
|
value: 24.871 |
|
- type: recall_at_10 |
|
value: 54.615 |
|
- type: recall_at_100 |
|
value: 84.276 |
|
- type: recall_at_1000 |
|
value: 98.578 |
|
- type: recall_at_3 |
|
value: 38.936 |
|
- type: recall_at_5 |
|
value: 45.061 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 76.12748045700542 |
|
- type: cos_sim_ap |
|
value: 84.47948419710998 |
|
- type: cos_sim_f1 |
|
value: 77.88108108108108 |
|
- type: cos_sim_precision |
|
value: 72.43112809169516 |
|
- type: cos_sim_recall |
|
value: 84.21790974982464 |
|
- type: dot_accuracy |
|
value: 76.12748045700542 |
|
- type: dot_ap |
|
value: 84.4933237839786 |
|
- type: dot_f1 |
|
value: 77.88108108108108 |
|
- type: dot_precision |
|
value: 72.43112809169516 |
|
- type: dot_recall |
|
value: 84.21790974982464 |
|
- type: euclidean_accuracy |
|
value: 76.12748045700542 |
|
- type: euclidean_ap |
|
value: 84.47947997540409 |
|
- type: euclidean_f1 |
|
value: 77.88108108108108 |
|
- type: euclidean_precision |
|
value: 72.43112809169516 |
|
- type: euclidean_recall |
|
value: 84.21790974982464 |
|
- type: manhattan_accuracy |
|
value: 75.40589296452195 |
|
- type: manhattan_ap |
|
value: 83.74383956930585 |
|
- type: manhattan_f1 |
|
value: 77.0983342289092 |
|
- type: manhattan_precision |
|
value: 71.34049323786795 |
|
- type: manhattan_recall |
|
value: 83.86719663315408 |
|
- type: max_accuracy |
|
value: 76.12748045700542 |
|
- type: max_ap |
|
value: 84.4933237839786 |
|
- type: max_f1 |
|
value: 77.88108108108108 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
metrics: |
|
- type: map_at_1 |
|
value: 66.781 |
|
- type: map_at_10 |
|
value: 74.539 |
|
- type: map_at_100 |
|
value: 74.914 |
|
- type: map_at_1000 |
|
value: 74.921 |
|
- type: map_at_3 |
|
value: 72.734 |
|
- type: map_at_5 |
|
value: 73.788 |
|
- type: mrr_at_1 |
|
value: 66.913 |
|
- type: mrr_at_10 |
|
value: 74.543 |
|
- type: mrr_at_100 |
|
value: 74.914 |
|
- type: mrr_at_1000 |
|
value: 74.921 |
|
- type: mrr_at_3 |
|
value: 72.831 |
|
- type: mrr_at_5 |
|
value: 73.76899999999999 |
|
- type: ndcg_at_1 |
|
value: 67.018 |
|
- type: ndcg_at_10 |
|
value: 78.34299999999999 |
|
- type: ndcg_at_100 |
|
value: 80.138 |
|
- type: ndcg_at_1000 |
|
value: 80.322 |
|
- type: ndcg_at_3 |
|
value: 74.667 |
|
- type: ndcg_at_5 |
|
value: 76.518 |
|
- type: precision_at_1 |
|
value: 67.018 |
|
- type: precision_at_10 |
|
value: 9.115 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 26.906000000000002 |
|
- type: precision_at_5 |
|
value: 17.092 |
|
- type: recall_at_1 |
|
value: 66.781 |
|
- type: recall_at_10 |
|
value: 90.253 |
|
- type: recall_at_100 |
|
value: 98.52499999999999 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 80.05799999999999 |
|
- type: recall_at_5 |
|
value: 84.615 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.528 |
|
- type: map_at_10 |
|
value: 76.304 |
|
- type: map_at_100 |
|
value: 79.327 |
|
- type: map_at_1000 |
|
value: 79.373 |
|
- type: map_at_3 |
|
value: 52.035 |
|
- type: map_at_5 |
|
value: 66.074 |
|
- type: mrr_at_1 |
|
value: 86.05000000000001 |
|
- type: mrr_at_10 |
|
value: 90.74 |
|
- type: mrr_at_100 |
|
value: 90.809 |
|
- type: mrr_at_1000 |
|
value: 90.81099999999999 |
|
- type: mrr_at_3 |
|
value: 90.30799999999999 |
|
- type: mrr_at_5 |
|
value: 90.601 |
|
- type: ndcg_at_1 |
|
value: 86.05000000000001 |
|
- type: ndcg_at_10 |
|
value: 84.518 |
|
- type: ndcg_at_100 |
|
value: 87.779 |
|
- type: ndcg_at_1000 |
|
value: 88.184 |
|
- type: ndcg_at_3 |
|
value: 82.339 |
|
- type: ndcg_at_5 |
|
value: 81.613 |
|
- type: precision_at_1 |
|
value: 86.05000000000001 |
|
- type: precision_at_10 |
|
value: 40.945 |
|
- type: precision_at_100 |
|
value: 4.787 |
|
- type: precision_at_1000 |
|
value: 0.48900000000000005 |
|
- type: precision_at_3 |
|
value: 74.117 |
|
- type: precision_at_5 |
|
value: 62.86000000000001 |
|
- type: recall_at_1 |
|
value: 24.528 |
|
- type: recall_at_10 |
|
value: 86.78 |
|
- type: recall_at_100 |
|
value: 97.198 |
|
- type: recall_at_1000 |
|
value: 99.227 |
|
- type: recall_at_3 |
|
value: 54.94799999999999 |
|
- type: recall_at_5 |
|
value: 72.053 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 52.1 |
|
- type: map_at_10 |
|
value: 62.502 |
|
- type: map_at_100 |
|
value: 63.026 |
|
- type: map_at_1000 |
|
value: 63.04 |
|
- type: map_at_3 |
|
value: 59.782999999999994 |
|
- type: map_at_5 |
|
value: 61.443000000000005 |
|
- type: mrr_at_1 |
|
value: 52.1 |
|
- type: mrr_at_10 |
|
value: 62.502 |
|
- type: mrr_at_100 |
|
value: 63.026 |
|
- type: mrr_at_1000 |
|
value: 63.04 |
|
- type: mrr_at_3 |
|
value: 59.782999999999994 |
|
- type: mrr_at_5 |
|
value: 61.443000000000005 |
|
- type: ndcg_at_1 |
|
value: 52.1 |
|
- type: ndcg_at_10 |
|
value: 67.75999999999999 |
|
- type: ndcg_at_100 |
|
value: 70.072 |
|
- type: ndcg_at_1000 |
|
value: 70.441 |
|
- type: ndcg_at_3 |
|
value: 62.28 |
|
- type: ndcg_at_5 |
|
value: 65.25800000000001 |
|
- type: precision_at_1 |
|
value: 52.1 |
|
- type: precision_at_10 |
|
value: 8.43 |
|
- type: precision_at_100 |
|
value: 0.946 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 23.166999999999998 |
|
- type: precision_at_5 |
|
value: 15.340000000000002 |
|
- type: recall_at_1 |
|
value: 52.1 |
|
- type: recall_at_10 |
|
value: 84.3 |
|
- type: recall_at_100 |
|
value: 94.6 |
|
- type: recall_at_1000 |
|
value: 97.5 |
|
- type: recall_at_3 |
|
value: 69.5 |
|
- type: recall_at_5 |
|
value: 76.7 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: 421605374b29664c5fc098418fe20ada9bd55f8a |
|
metrics: |
|
- type: accuracy |
|
value: 52.04309349749903 |
|
- type: f1 |
|
value: 39.91893257315586 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b |
|
metrics: |
|
- type: accuracy |
|
value: 85.60975609756099 |
|
- type: ap |
|
value: 54.30148799475452 |
|
- type: f1 |
|
value: 80.55899583002706 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.80471387011771 |
|
- type: cos_sim_spearman |
|
value: 72.69179486905233 |
|
- type: euclidean_pearson |
|
value: 71.32341962627513 |
|
- type: euclidean_spearman |
|
value: 72.69179043377405 |
|
- type: manhattan_pearson |
|
value: 71.06180379791572 |
|
- type: manhattan_spearman |
|
value: 72.400125270369 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 |
|
metrics: |
|
- type: map |
|
value: 27.9616280919871 |
|
- type: mrr |
|
value: 26.544047619047618 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 68.32300000000001 |
|
- type: map_at_10 |
|
value: 77.187 |
|
- type: map_at_100 |
|
value: 77.496 |
|
- type: map_at_1000 |
|
value: 77.503 |
|
- type: map_at_3 |
|
value: 75.405 |
|
- type: map_at_5 |
|
value: 76.539 |
|
- type: mrr_at_1 |
|
value: 70.616 |
|
- type: mrr_at_10 |
|
value: 77.703 |
|
- type: mrr_at_100 |
|
value: 77.97699999999999 |
|
- type: mrr_at_1000 |
|
value: 77.984 |
|
- type: mrr_at_3 |
|
value: 76.139 |
|
- type: mrr_at_5 |
|
value: 77.125 |
|
- type: ndcg_at_1 |
|
value: 70.616 |
|
- type: ndcg_at_10 |
|
value: 80.741 |
|
- type: ndcg_at_100 |
|
value: 82.123 |
|
- type: ndcg_at_1000 |
|
value: 82.32300000000001 |
|
- type: ndcg_at_3 |
|
value: 77.35600000000001 |
|
- type: ndcg_at_5 |
|
value: 79.274 |
|
- type: precision_at_1 |
|
value: 70.616 |
|
- type: precision_at_10 |
|
value: 9.696 |
|
- type: precision_at_100 |
|
value: 1.038 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 29.026000000000003 |
|
- type: precision_at_5 |
|
value: 18.433 |
|
- type: recall_at_1 |
|
value: 68.32300000000001 |
|
- type: recall_at_10 |
|
value: 91.186 |
|
- type: recall_at_100 |
|
value: 97.439 |
|
- type: recall_at_1000 |
|
value: 99.004 |
|
- type: recall_at_3 |
|
value: 82.218 |
|
- type: recall_at_5 |
|
value: 86.797 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 74.78143913920646 |
|
- type: f1 |
|
value: 72.6141122227626 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 76.98722259583053 |
|
- type: f1 |
|
value: 76.5974920207624 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 51.800000000000004 |
|
- type: map_at_10 |
|
value: 57.938 |
|
- type: map_at_100 |
|
value: 58.494 |
|
- type: map_at_1000 |
|
value: 58.541 |
|
- type: map_at_3 |
|
value: 56.617 |
|
- type: map_at_5 |
|
value: 57.302 |
|
- type: mrr_at_1 |
|
value: 51.800000000000004 |
|
- type: mrr_at_10 |
|
value: 57.938 |
|
- type: mrr_at_100 |
|
value: 58.494 |
|
- type: mrr_at_1000 |
|
value: 58.541 |
|
- type: mrr_at_3 |
|
value: 56.617 |
|
- type: mrr_at_5 |
|
value: 57.302 |
|
- type: ndcg_at_1 |
|
value: 51.800000000000004 |
|
- type: ndcg_at_10 |
|
value: 60.891 |
|
- type: ndcg_at_100 |
|
value: 63.897000000000006 |
|
- type: ndcg_at_1000 |
|
value: 65.231 |
|
- type: ndcg_at_3 |
|
value: 58.108000000000004 |
|
- type: ndcg_at_5 |
|
value: 59.343 |
|
- type: precision_at_1 |
|
value: 51.800000000000004 |
|
- type: precision_at_10 |
|
value: 7.02 |
|
- type: precision_at_100 |
|
value: 0.8500000000000001 |
|
- type: precision_at_1000 |
|
value: 0.096 |
|
- type: precision_at_3 |
|
value: 20.8 |
|
- type: precision_at_5 |
|
value: 13.08 |
|
- type: recall_at_1 |
|
value: 51.800000000000004 |
|
- type: recall_at_10 |
|
value: 70.19999999999999 |
|
- type: recall_at_100 |
|
value: 85.0 |
|
- type: recall_at_1000 |
|
value: 95.7 |
|
- type: recall_at_3 |
|
value: 62.4 |
|
- type: recall_at_5 |
|
value: 65.4 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a |
|
metrics: |
|
- type: accuracy |
|
value: 80.39333333333335 |
|
- type: f1 |
|
value: 80.42683132366277 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: 66e76a618a34d6d565d5538088562851e6daa7ec |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 70.7634001082837 |
|
- type: cos_sim_ap |
|
value: 74.97527385556558 |
|
- type: cos_sim_f1 |
|
value: 72.77277277277277 |
|
- type: cos_sim_precision |
|
value: 69.17221693625119 |
|
- type: cos_sim_recall |
|
value: 76.76874340021119 |
|
- type: dot_accuracy |
|
value: 70.7634001082837 |
|
- type: dot_ap |
|
value: 74.97527385556558 |
|
- type: dot_f1 |
|
value: 72.77277277277277 |
|
- type: dot_precision |
|
value: 69.17221693625119 |
|
- type: dot_recall |
|
value: 76.76874340021119 |
|
- type: euclidean_accuracy |
|
value: 70.7634001082837 |
|
- type: euclidean_ap |
|
value: 74.97527385556558 |
|
- type: euclidean_f1 |
|
value: 72.77277277277277 |
|
- type: euclidean_precision |
|
value: 69.17221693625119 |
|
- type: euclidean_recall |
|
value: 76.76874340021119 |
|
- type: manhattan_accuracy |
|
value: 69.89713048186248 |
|
- type: manhattan_ap |
|
value: 74.25943370061067 |
|
- type: manhattan_f1 |
|
value: 72.17268887846082 |
|
- type: manhattan_precision |
|
value: 64.94932432432432 |
|
- type: manhattan_recall |
|
value: 81.20380147835269 |
|
- type: max_accuracy |
|
value: 70.7634001082837 |
|
- type: max_ap |
|
value: 74.97527385556558 |
|
- type: max_f1 |
|
value: 72.77277277277277 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: e610f2ebd179a8fda30ae534c3878750a96db120 |
|
metrics: |
|
- type: accuracy |
|
value: 92.92000000000002 |
|
- type: ap |
|
value: 91.98475625106201 |
|
- type: f1 |
|
value: 92.91841470541901 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 14.383440096352668 |
|
- type: cos_sim_spearman |
|
value: 16.306924065606417 |
|
- type: euclidean_pearson |
|
value: 18.41761420026285 |
|
- type: euclidean_spearman |
|
value: 16.306657048204574 |
|
- type: manhattan_pearson |
|
value: 18.4377010794545 |
|
- type: manhattan_spearman |
|
value: 16.36919038809279 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.95106420311818 |
|
- type: cos_sim_spearman |
|
value: 34.89277148116508 |
|
- type: euclidean_pearson |
|
value: 32.94933182954164 |
|
- type: euclidean_spearman |
|
value: 34.89280064539983 |
|
- type: manhattan_pearson |
|
value: 32.86089069741366 |
|
- type: manhattan_spearman |
|
value: 34.7932921716507 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.41628669863584 |
|
- type: cos_sim_spearman |
|
value: 67.87238206703478 |
|
- type: euclidean_pearson |
|
value: 67.67834985311778 |
|
- type: euclidean_spearman |
|
value: 67.87238206703478 |
|
- type: manhattan_pearson |
|
value: 68.23423896742973 |
|
- type: manhattan_spearman |
|
value: 68.27069260687092 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.31628954400037 |
|
- type: cos_sim_spearman |
|
value: 76.83296022489624 |
|
- type: euclidean_pearson |
|
value: 76.69680425261211 |
|
- type: euclidean_spearman |
|
value: 76.83287843321102 |
|
- type: manhattan_pearson |
|
value: 76.65603163327958 |
|
- type: manhattan_spearman |
|
value: 76.80803503360451 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: 76631901a18387f85eaa53e5450019b87ad58ef9 |
|
metrics: |
|
- type: map |
|
value: 66.73038448968596 |
|
- type: mrr |
|
value: 77.26510193334836 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.157 |
|
- type: map_at_10 |
|
value: 79.00399999999999 |
|
- type: map_at_100 |
|
value: 82.51899999999999 |
|
- type: map_at_1000 |
|
value: 82.577 |
|
- type: map_at_3 |
|
value: 55.614 |
|
- type: map_at_5 |
|
value: 68.292 |
|
- type: mrr_at_1 |
|
value: 91.167 |
|
- type: mrr_at_10 |
|
value: 93.391 |
|
- type: mrr_at_100 |
|
value: 93.467 |
|
- type: mrr_at_1000 |
|
value: 93.47 |
|
- type: mrr_at_3 |
|
value: 93.001 |
|
- type: mrr_at_5 |
|
value: 93.254 |
|
- type: ndcg_at_1 |
|
value: 91.167 |
|
- type: ndcg_at_10 |
|
value: 86.155 |
|
- type: ndcg_at_100 |
|
value: 89.425 |
|
- type: ndcg_at_1000 |
|
value: 89.983 |
|
- type: ndcg_at_3 |
|
value: 87.516 |
|
- type: ndcg_at_5 |
|
value: 86.148 |
|
- type: precision_at_1 |
|
value: 91.167 |
|
- type: precision_at_10 |
|
value: 42.697 |
|
- type: precision_at_100 |
|
value: 5.032 |
|
- type: precision_at_1000 |
|
value: 0.516 |
|
- type: precision_at_3 |
|
value: 76.45100000000001 |
|
- type: precision_at_5 |
|
value: 64.051 |
|
- type: recall_at_1 |
|
value: 28.157 |
|
- type: recall_at_10 |
|
value: 84.974 |
|
- type: recall_at_100 |
|
value: 95.759 |
|
- type: recall_at_1000 |
|
value: 98.583 |
|
- type: recall_at_3 |
|
value: 57.102 |
|
- type: recall_at_5 |
|
value: 71.383 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 |
|
metrics: |
|
- type: accuracy |
|
value: 55.031 |
|
- type: f1 |
|
value: 53.07992810732314 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: 5798586b105c0434e4f0fe5e767abe619442cf93 |
|
metrics: |
|
- type: v_measure |
|
value: 72.80915114296552 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d |
|
metrics: |
|
- type: v_measure |
|
value: 70.86374654127641 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
metrics: |
|
- type: map_at_1 |
|
value: 63.6 |
|
- type: map_at_10 |
|
value: 72.673 |
|
- type: map_at_100 |
|
value: 73.05199999999999 |
|
- type: map_at_1000 |
|
value: 73.057 |
|
- type: map_at_3 |
|
value: 70.833 |
|
- type: map_at_5 |
|
value: 72.05799999999999 |
|
- type: mrr_at_1 |
|
value: 63.6 |
|
- type: mrr_at_10 |
|
value: 72.673 |
|
- type: mrr_at_100 |
|
value: 73.05199999999999 |
|
- type: mrr_at_1000 |
|
value: 73.057 |
|
- type: mrr_at_3 |
|
value: 70.833 |
|
- type: mrr_at_5 |
|
value: 72.05799999999999 |
|
- type: ndcg_at_1 |
|
value: 63.6 |
|
- type: ndcg_at_10 |
|
value: 76.776 |
|
- type: ndcg_at_100 |
|
value: 78.52900000000001 |
|
- type: ndcg_at_1000 |
|
value: 78.696 |
|
- type: ndcg_at_3 |
|
value: 73.093 |
|
- type: ndcg_at_5 |
|
value: 75.288 |
|
- type: precision_at_1 |
|
value: 63.6 |
|
- type: precision_at_10 |
|
value: 8.95 |
|
- type: precision_at_100 |
|
value: 0.975 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 26.533 |
|
- type: precision_at_5 |
|
value: 16.98 |
|
- type: recall_at_1 |
|
value: 63.6 |
|
- type: recall_at_10 |
|
value: 89.5 |
|
- type: recall_at_100 |
|
value: 97.5 |
|
- type: recall_at_1000 |
|
value: 98.9 |
|
- type: recall_at_3 |
|
value: 79.60000000000001 |
|
- type: recall_at_5 |
|
value: 84.89999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: 339287def212450dcaa9df8c22bf93e9980c7023 |
|
metrics: |
|
- type: accuracy |
|
value: 89.39999999999999 |
|
- type: ap |
|
value: 75.52087544076016 |
|
- type: f1 |
|
value: 87.7629629899278 |
|
--- |
|
|
|
<p align="center"> |
|
<img src="images/gme_logo.png" alt="GME Logo" style="width: 100%; max-width: 450px;"> |
|
</p> |
|
|
|
<p align="center"><b>GME: General Multimodal Embedding</b></p> |
|
|
|
## GME-Qwen2-VL-2B |
|
|
|
We are excited to present `GME-Qwen2VL` series of unified **multimodal embedding models**, |
|
which are based on the advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs). |
|
|
|
The `GME` models support three types of input: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance. |
|
|
|
**Key Enhancements of GME Models**: |
|
|
|
- **Unified Multimodal Representation**: GME models can process both single-modal and combined-modal inputs, resulting in a unified vector representation. This enables versatile retrieval scenarios (Any2Any Search), supporting tasks such as text retrieval, image retrieval from text, and image-to-image searches. |
|
- **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and demonstrate strong evaluation scores in the Multimodal Textual Evaluation Benchmark (**MTEB**). |
|
- **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input. |
|
- **Strong Visual Retrieval Performance**: Enhanced by the Qwen2-VL model series, our models excel in visual document retrieval tasks that require a nuanced understanding of document screenshots. |
|
This capability is particularly beneficial for complex document understanding scenarios, |
|
such as multimodal retrieval-augmented generation (RAG) applications focused on academic papers. |
|
|
|
**Developed by**: Tongyi Lab, Alibaba Group |
|
|
|
**Paper**: [GME: Improving Universal Multimodal Retrieval by Multimodal LLMs](http://arxiv.org/abs/2412.16855) |
|
|
|
|
|
## Model List |
|
| Models | Model Size | Max Seq. Length | Dimension | MTEB-en| MTEB-zh | UMRB | |
|
|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: | |
|
|[`gme-Qwen2-VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | 65.27 | 66.92 | 64.45 | |
|
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 69.73 | 67.44 | |
|
|
|
## Usage |
|
**Use with custom code** |
|
|
|
```python |
|
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py |
|
from gme_inference import GmeQwen2VL |
|
|
|
texts = [ |
|
"What kind of car is this?", |
|
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023." |
|
] |
|
images = [ |
|
'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg', |
|
'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', |
|
] |
|
|
|
gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct") |
|
|
|
# Single-modal embedding |
|
e_text = gme.get_text_embeddings(texts=texts) |
|
e_image = gme.get_image_embeddings(images=images) |
|
print((e_text * e_image).sum(-1)) |
|
## tensor([0.2281, 0.6001], dtype=torch.float16) |
|
|
|
# How to set embedding instruction |
|
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.') |
|
# If is_query=False, we always use the default instruction. |
|
e_corpus = gme.get_image_embeddings(images=images, is_query=False) |
|
print((e_query * e_corpus).sum(-1)) |
|
## tensor([0.2433, 0.7051], dtype=torch.float16) |
|
|
|
# Fused-modal embedding |
|
e_fused = gme.get_fused_embeddings(texts=texts, images=images) |
|
print((e_fused[0] * e_fused[1]).sum()) |
|
## tensor(0.6108, dtype=torch.float16) |
|
|
|
``` |
|
|
|
## Evaluation |
|
|
|
We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others. |
|
|
|
| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. | |
|
|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:| |
|
| | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) | |
|
| VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 37.32 | |
|
| CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.66 | |
|
| One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.01 | |
|
| DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.04 | |
|
| E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.52 | |
|
| **[GME-Qwen2-VL-2B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct)** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | 61.93 | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 | |
|
| **[GME-Qwen2-VL-7B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct)** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | **65.83** | **80.94** | **66.18** | **42.56** | **73.62** | **67.44** | |
|
|
|
The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model. |
|
|
|
**More detailed experimental results can be found in the [paper](http://arxiv.org/abs/2412.16855)**. |
|
|
|
|
|
## Limitations |
|
|
|
- **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency. |
|
Due to the lack of relevant data, our models and evaluations retain one single image. |
|
- **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed. |
|
|
|
We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version. |
|
|
|
## Redistribution and Use |
|
|
|
We encourage and value diverse applications of GME models and continuous enhancements to the models themselves. |
|
|
|
- If you distribute or make GME models (or any derivative works) available, or if you create a product or service (including another AI model) that incorporates them, you must prominently display `Built with GME` on your website, user interface, blog post, About page, or product documentation. |
|
|
|
- If you utilize GME models or their outputs to develop, train, fine-tune, or improve an AI model that is distributed or made available, you must prefix the name of any such AI model with `GME`. |
|
|
|
## Cloud API Services |
|
|
|
In addition to the open-source [GME](https://huggingface.co/collections/Alibaba-NLP/gme-models-67667e092da3491f630964d6) series models, GME series models are also available as commercial API services on Alibaba Cloud. |
|
|
|
- [MultiModal Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/multimodal-embedding-api-reference?spm=a2c4g.11186623.0.0.321c1d1cqmoJ5C): The `multimodal-embedding-v1` model service is available. |
|
|
|
Note that the models behind the commercial APIs are not entirely identical to the open-source models. |
|
|
|
## Hiring |
|
|
|
We have open positions for Research Interns and Full-Time Researchers to join our team at Tongyi Lab. |
|
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. |
|
Our team is located in the vibrant cities of Beijing and Hangzhou, offering a collaborative and dynamic work environment where you can contribute to cutting-edge advancements in artificial intelligence and machine learning. |
|
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:dingkun.ldk@alibaba-inc.com">dingkun.ldk@alibaba-inc.com</a>. |
|
|
|
## Citation |
|
If you find our paper or models helpful, please consider cite: |
|
|
|
``` |
|
@misc{zhang2024gme, |
|
title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs}, |
|
author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min}, |
|
year={2024}, |
|
eprint={2412.16855}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={http://arxiv.org/abs/2412.16855}, |
|
} |
|
``` |