|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- Qwen/Qwen2-VL-7B-Instruct |
|
language: |
|
- en |
|
- zh |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
- Qwen2-VL |
|
- sentence-similarity |
|
- vidore |
|
model-index: |
|
- name: gme-Qwen2-VL-7B-Instruct |
|
results: |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: b44c3b011063adb25877c13823db83bb193913c4 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 64.72351048394194 |
|
- type: cos_sim_spearman |
|
value: 71.66842612591344 |
|
- type: euclidean_pearson |
|
value: 70.0342809043895 |
|
- type: euclidean_spearman |
|
value: 71.66842612323917 |
|
- type: manhattan_pearson |
|
value: 69.94743870947117 |
|
- type: manhattan_spearman |
|
value: 71.53159630946965 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.38188106868689 |
|
- type: cos_sim_spearman |
|
value: 55.468235529709766 |
|
- type: euclidean_pearson |
|
value: 56.974786979175086 |
|
- type: euclidean_spearman |
|
value: 55.468231026153745 |
|
- type: manhattan_pearson |
|
value: 56.94467132566259 |
|
- type: manhattan_spearman |
|
value: 55.39037386224014 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 77.61194029850746 |
|
- type: ap |
|
value: 41.29789064067677 |
|
- type: f1 |
|
value: 71.69633278678522 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 97.3258 |
|
- type: ap |
|
value: 95.91845683387056 |
|
- type: f1 |
|
value: 97.32526074864263 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 64.794 |
|
- type: f1 |
|
value: 63.7329780206882 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 55.099999999999994 |
|
- type: f1 |
|
value: 53.115528412999666 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 40.541 |
|
- type: map_at_10 |
|
value: 56.315000000000005 |
|
- type: map_at_100 |
|
value: 56.824 |
|
- type: map_at_1000 |
|
value: 56.825 |
|
- type: map_at_3 |
|
value: 51.778 |
|
- type: map_at_5 |
|
value: 54.623 |
|
- type: mrr_at_1 |
|
value: 41.038000000000004 |
|
- type: mrr_at_10 |
|
value: 56.532000000000004 |
|
- type: mrr_at_100 |
|
value: 57.034 |
|
- type: mrr_at_1000 |
|
value: 57.034 |
|
- type: mrr_at_3 |
|
value: 52.015 |
|
- type: mrr_at_5 |
|
value: 54.835 |
|
- type: ndcg_at_1 |
|
value: 40.541 |
|
- type: ndcg_at_10 |
|
value: 64.596 |
|
- type: ndcg_at_100 |
|
value: 66.656 |
|
- type: ndcg_at_1000 |
|
value: 66.666 |
|
- type: ndcg_at_3 |
|
value: 55.415000000000006 |
|
- type: ndcg_at_5 |
|
value: 60.527 |
|
- type: precision_at_1 |
|
value: 40.541 |
|
- type: precision_at_10 |
|
value: 9.083 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 21.977 |
|
- type: precision_at_5 |
|
value: 15.661 |
|
- type: recall_at_1 |
|
value: 40.541 |
|
- type: recall_at_10 |
|
value: 90.825 |
|
- type: recall_at_100 |
|
value: 99.57300000000001 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 65.932 |
|
- type: recall_at_5 |
|
value: 78.307 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 54.96111428218386 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 50.637711388838945 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 64.0741897266483 |
|
- type: mrr |
|
value: 76.11440882909028 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.2557839280406 |
|
- type: cos_sim_spearman |
|
value: 82.58200216886888 |
|
- type: euclidean_pearson |
|
value: 84.80588838508498 |
|
- type: euclidean_spearman |
|
value: 82.58200216886888 |
|
- type: manhattan_pearson |
|
value: 84.53082035185592 |
|
- type: manhattan_spearman |
|
value: 82.4964580510134 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.98420285210636 |
|
- type: cos_sim_spearman |
|
value: 78.95549489000658 |
|
- type: euclidean_pearson |
|
value: 79.14591532018991 |
|
- type: euclidean_spearman |
|
value: 78.95549488953284 |
|
- type: manhattan_pearson |
|
value: 79.26212116856509 |
|
- type: manhattan_spearman |
|
value: 79.02104262086006 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 84.76298701298703 |
|
- type: f1 |
|
value: 84.24881789367576 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 46.86757924102047 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 43.86043680479362 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 |
|
metrics: |
|
- type: v_measure |
|
value: 45.684222588040605 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f |
|
metrics: |
|
- type: v_measure |
|
value: 45.45639765303432 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df |
|
metrics: |
|
- type: map |
|
value: 88.7058672660788 |
|
- type: mrr |
|
value: 90.5795634920635 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: 23d186750531a14a0357ca22cd92d712fd512ea0 |
|
metrics: |
|
- type: map |
|
value: 90.50750030424048 |
|
- type: mrr |
|
value: 92.3970634920635 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.848000000000003 |
|
- type: map_at_10 |
|
value: 40.453 |
|
- type: map_at_100 |
|
value: 42.065000000000005 |
|
- type: map_at_1000 |
|
value: 42.176 |
|
- type: map_at_3 |
|
value: 36.697 |
|
- type: map_at_5 |
|
value: 38.855000000000004 |
|
- type: mrr_at_1 |
|
value: 34.764 |
|
- type: mrr_at_10 |
|
value: 45.662000000000006 |
|
- type: mrr_at_100 |
|
value: 46.56 |
|
- type: mrr_at_1000 |
|
value: 46.597 |
|
- type: mrr_at_3 |
|
value: 42.632 |
|
- type: mrr_at_5 |
|
value: 44.249 |
|
- type: ndcg_at_1 |
|
value: 34.764 |
|
- type: ndcg_at_10 |
|
value: 47.033 |
|
- type: ndcg_at_100 |
|
value: 53.089 |
|
- type: ndcg_at_1000 |
|
value: 54.818 |
|
- type: ndcg_at_3 |
|
value: 41.142 |
|
- type: ndcg_at_5 |
|
value: 43.928 |
|
- type: precision_at_1 |
|
value: 34.764 |
|
- type: precision_at_10 |
|
value: 9.027000000000001 |
|
- type: precision_at_100 |
|
value: 1.465 |
|
- type: precision_at_1000 |
|
value: 0.192 |
|
- type: precision_at_3 |
|
value: 19.695 |
|
- type: precision_at_5 |
|
value: 14.535 |
|
- type: recall_at_1 |
|
value: 28.848000000000003 |
|
- type: recall_at_10 |
|
value: 60.849 |
|
- type: recall_at_100 |
|
value: 85.764 |
|
- type: recall_at_1000 |
|
value: 96.098 |
|
- type: recall_at_3 |
|
value: 44.579 |
|
- type: recall_at_5 |
|
value: 51.678999999999995 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.731 |
|
- type: map_at_10 |
|
value: 41.859 |
|
- type: map_at_100 |
|
value: 43.13 |
|
- type: map_at_1000 |
|
value: 43.257 |
|
- type: map_at_3 |
|
value: 38.384 |
|
- type: map_at_5 |
|
value: 40.284 |
|
- type: mrr_at_1 |
|
value: 38.471 |
|
- type: mrr_at_10 |
|
value: 47.531 |
|
- type: mrr_at_100 |
|
value: 48.199 |
|
- type: mrr_at_1000 |
|
value: 48.24 |
|
- type: mrr_at_3 |
|
value: 44.989000000000004 |
|
- type: mrr_at_5 |
|
value: 46.403 |
|
- type: ndcg_at_1 |
|
value: 38.471 |
|
- type: ndcg_at_10 |
|
value: 48.022999999999996 |
|
- type: ndcg_at_100 |
|
value: 52.32599999999999 |
|
- type: ndcg_at_1000 |
|
value: 54.26 |
|
- type: ndcg_at_3 |
|
value: 42.986999999999995 |
|
- type: ndcg_at_5 |
|
value: 45.23 |
|
- type: precision_at_1 |
|
value: 38.471 |
|
- type: precision_at_10 |
|
value: 9.248000000000001 |
|
- type: precision_at_100 |
|
value: 1.469 |
|
- type: precision_at_1000 |
|
value: 0.193 |
|
- type: precision_at_3 |
|
value: 20.892 |
|
- type: precision_at_5 |
|
value: 14.892 |
|
- type: recall_at_1 |
|
value: 30.731 |
|
- type: recall_at_10 |
|
value: 59.561 |
|
- type: recall_at_100 |
|
value: 77.637 |
|
- type: recall_at_1000 |
|
value: 89.64999999999999 |
|
- type: recall_at_3 |
|
value: 44.897999999999996 |
|
- type: recall_at_5 |
|
value: 51.181 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 34.949000000000005 |
|
- type: map_at_10 |
|
value: 48.117 |
|
- type: map_at_100 |
|
value: 49.355 |
|
- type: map_at_1000 |
|
value: 49.409 |
|
- type: map_at_3 |
|
value: 44.732 |
|
- type: map_at_5 |
|
value: 46.555 |
|
- type: mrr_at_1 |
|
value: 40.188 |
|
- type: mrr_at_10 |
|
value: 51.452 |
|
- type: mrr_at_100 |
|
value: 52.219 |
|
- type: mrr_at_1000 |
|
value: 52.24100000000001 |
|
- type: mrr_at_3 |
|
value: 48.642 |
|
- type: mrr_at_5 |
|
value: 50.134 |
|
- type: ndcg_at_1 |
|
value: 40.188 |
|
- type: ndcg_at_10 |
|
value: 54.664 |
|
- type: ndcg_at_100 |
|
value: 59.38099999999999 |
|
- type: ndcg_at_1000 |
|
value: 60.363 |
|
- type: ndcg_at_3 |
|
value: 48.684 |
|
- type: ndcg_at_5 |
|
value: 51.406 |
|
- type: precision_at_1 |
|
value: 40.188 |
|
- type: precision_at_10 |
|
value: 9.116 |
|
- type: precision_at_100 |
|
value: 1.248 |
|
- type: precision_at_1000 |
|
value: 0.13699999999999998 |
|
- type: precision_at_3 |
|
value: 22.236 |
|
- type: precision_at_5 |
|
value: 15.310000000000002 |
|
- type: recall_at_1 |
|
value: 34.949000000000005 |
|
- type: recall_at_10 |
|
value: 70.767 |
|
- type: recall_at_100 |
|
value: 90.79 |
|
- type: recall_at_1000 |
|
value: 97.57900000000001 |
|
- type: recall_at_3 |
|
value: 54.723 |
|
- type: recall_at_5 |
|
value: 61.404 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.312 |
|
- type: map_at_10 |
|
value: 34.799 |
|
- type: map_at_100 |
|
value: 35.906 |
|
- type: map_at_1000 |
|
value: 35.983 |
|
- type: map_at_3 |
|
value: 31.582 |
|
- type: map_at_5 |
|
value: 33.507999999999996 |
|
- type: mrr_at_1 |
|
value: 27.232 |
|
- type: mrr_at_10 |
|
value: 36.82 |
|
- type: mrr_at_100 |
|
value: 37.733 |
|
- type: mrr_at_1000 |
|
value: 37.791000000000004 |
|
- type: mrr_at_3 |
|
value: 33.804 |
|
- type: mrr_at_5 |
|
value: 35.606 |
|
- type: ndcg_at_1 |
|
value: 27.232 |
|
- type: ndcg_at_10 |
|
value: 40.524 |
|
- type: ndcg_at_100 |
|
value: 45.654 |
|
- type: ndcg_at_1000 |
|
value: 47.557 |
|
- type: ndcg_at_3 |
|
value: 34.312 |
|
- type: ndcg_at_5 |
|
value: 37.553 |
|
- type: precision_at_1 |
|
value: 27.232 |
|
- type: precision_at_10 |
|
value: 6.52 |
|
- type: precision_at_100 |
|
value: 0.9530000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11399999999999999 |
|
- type: precision_at_3 |
|
value: 14.915000000000001 |
|
- type: precision_at_5 |
|
value: 10.847 |
|
- type: recall_at_1 |
|
value: 25.312 |
|
- type: recall_at_10 |
|
value: 56.169000000000004 |
|
- type: recall_at_100 |
|
value: 79.16499999999999 |
|
- type: recall_at_1000 |
|
value: 93.49300000000001 |
|
- type: recall_at_3 |
|
value: 39.5 |
|
- type: recall_at_5 |
|
value: 47.288999999999994 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
metrics: |
|
- type: map_at_1 |
|
value: 17.153 |
|
- type: map_at_10 |
|
value: 27.671 |
|
- type: map_at_100 |
|
value: 29.186 |
|
- type: map_at_1000 |
|
value: 29.299999999999997 |
|
- type: map_at_3 |
|
value: 24.490000000000002 |
|
- type: map_at_5 |
|
value: 26.178 |
|
- type: mrr_at_1 |
|
value: 21.144 |
|
- type: mrr_at_10 |
|
value: 32.177 |
|
- type: mrr_at_100 |
|
value: 33.247 |
|
- type: mrr_at_1000 |
|
value: 33.306000000000004 |
|
- type: mrr_at_3 |
|
value: 29.187 |
|
- type: mrr_at_5 |
|
value: 30.817 |
|
- type: ndcg_at_1 |
|
value: 21.144 |
|
- type: ndcg_at_10 |
|
value: 33.981 |
|
- type: ndcg_at_100 |
|
value: 40.549 |
|
- type: ndcg_at_1000 |
|
value: 43.03 |
|
- type: ndcg_at_3 |
|
value: 28.132 |
|
- type: ndcg_at_5 |
|
value: 30.721999999999998 |
|
- type: precision_at_1 |
|
value: 21.144 |
|
- type: precision_at_10 |
|
value: 6.666999999999999 |
|
- type: precision_at_100 |
|
value: 1.147 |
|
- type: precision_at_1000 |
|
value: 0.149 |
|
- type: precision_at_3 |
|
value: 14.302999999999999 |
|
- type: precision_at_5 |
|
value: 10.423 |
|
- type: recall_at_1 |
|
value: 17.153 |
|
- type: recall_at_10 |
|
value: 48.591 |
|
- type: recall_at_100 |
|
value: 76.413 |
|
- type: recall_at_1000 |
|
value: 93.8 |
|
- type: recall_at_3 |
|
value: 32.329 |
|
- type: recall_at_5 |
|
value: 38.958999999999996 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.909 |
|
- type: map_at_10 |
|
value: 40.168 |
|
- type: map_at_100 |
|
value: 41.524 |
|
- type: map_at_1000 |
|
value: 41.626000000000005 |
|
- type: map_at_3 |
|
value: 36.274 |
|
- type: map_at_5 |
|
value: 38.411 |
|
- type: mrr_at_1 |
|
value: 34.649 |
|
- type: mrr_at_10 |
|
value: 45.613 |
|
- type: mrr_at_100 |
|
value: 46.408 |
|
- type: mrr_at_1000 |
|
value: 46.444 |
|
- type: mrr_at_3 |
|
value: 42.620999999999995 |
|
- type: mrr_at_5 |
|
value: 44.277 |
|
- type: ndcg_at_1 |
|
value: 34.649 |
|
- type: ndcg_at_10 |
|
value: 47.071000000000005 |
|
- type: ndcg_at_100 |
|
value: 52.559999999999995 |
|
- type: ndcg_at_1000 |
|
value: 54.285000000000004 |
|
- type: ndcg_at_3 |
|
value: 40.63 |
|
- type: ndcg_at_5 |
|
value: 43.584 |
|
- type: precision_at_1 |
|
value: 34.649 |
|
- type: precision_at_10 |
|
value: 8.855 |
|
- type: precision_at_100 |
|
value: 1.361 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_3 |
|
value: 19.538 |
|
- type: precision_at_5 |
|
value: 14.187 |
|
- type: recall_at_1 |
|
value: 27.909 |
|
- type: recall_at_10 |
|
value: 62.275000000000006 |
|
- type: recall_at_100 |
|
value: 84.95 |
|
- type: recall_at_1000 |
|
value: 96.02000000000001 |
|
- type: recall_at_3 |
|
value: 44.767 |
|
- type: recall_at_5 |
|
value: 52.03 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.846000000000004 |
|
- type: map_at_10 |
|
value: 36.870999999999995 |
|
- type: map_at_100 |
|
value: 38.294 |
|
- type: map_at_1000 |
|
value: 38.401 |
|
- type: map_at_3 |
|
value: 33.163 |
|
- type: map_at_5 |
|
value: 35.177 |
|
- type: mrr_at_1 |
|
value: 31.849 |
|
- type: mrr_at_10 |
|
value: 41.681000000000004 |
|
- type: mrr_at_100 |
|
value: 42.658 |
|
- type: mrr_at_1000 |
|
value: 42.71 |
|
- type: mrr_at_3 |
|
value: 39.003 |
|
- type: mrr_at_5 |
|
value: 40.436 |
|
- type: ndcg_at_1 |
|
value: 31.849 |
|
- type: ndcg_at_10 |
|
value: 43.291000000000004 |
|
- type: ndcg_at_100 |
|
value: 49.136 |
|
- type: ndcg_at_1000 |
|
value: 51.168 |
|
- type: ndcg_at_3 |
|
value: 37.297999999999995 |
|
- type: ndcg_at_5 |
|
value: 39.934 |
|
- type: precision_at_1 |
|
value: 31.849 |
|
- type: precision_at_10 |
|
value: 8.219 |
|
- type: precision_at_100 |
|
value: 1.318 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_3 |
|
value: 18.151 |
|
- type: precision_at_5 |
|
value: 13.242 |
|
- type: recall_at_1 |
|
value: 25.846000000000004 |
|
- type: recall_at_10 |
|
value: 57.642 |
|
- type: recall_at_100 |
|
value: 82.069 |
|
- type: recall_at_1000 |
|
value: 95.684 |
|
- type: recall_at_3 |
|
value: 40.778999999999996 |
|
- type: recall_at_5 |
|
value: 47.647 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.34866666666667 |
|
- type: map_at_10 |
|
value: 35.65541666666667 |
|
- type: map_at_100 |
|
value: 36.982416666666666 |
|
- type: map_at_1000 |
|
value: 37.09416666666667 |
|
- type: map_at_3 |
|
value: 32.421499999999995 |
|
- type: map_at_5 |
|
value: 34.20266666666667 |
|
- type: mrr_at_1 |
|
value: 30.02116666666667 |
|
- type: mrr_at_10 |
|
value: 39.781666666666666 |
|
- type: mrr_at_100 |
|
value: 40.69733333333333 |
|
- type: mrr_at_1000 |
|
value: 40.74875 |
|
- type: mrr_at_3 |
|
value: 37.043083333333335 |
|
- type: mrr_at_5 |
|
value: 38.56391666666666 |
|
- type: ndcg_at_1 |
|
value: 30.02116666666667 |
|
- type: ndcg_at_10 |
|
value: 41.66133333333333 |
|
- type: ndcg_at_100 |
|
value: 47.21474999999999 |
|
- type: ndcg_at_1000 |
|
value: 49.29600000000001 |
|
- type: ndcg_at_3 |
|
value: 36.06958333333334 |
|
- type: ndcg_at_5 |
|
value: 38.66858333333333 |
|
- type: precision_at_1 |
|
value: 30.02116666666667 |
|
- type: precision_at_10 |
|
value: 7.497249999999999 |
|
- type: precision_at_100 |
|
value: 1.2044166666666667 |
|
- type: precision_at_1000 |
|
value: 0.15766666666666665 |
|
- type: precision_at_3 |
|
value: 16.83458333333333 |
|
- type: precision_at_5 |
|
value: 12.134 |
|
- type: recall_at_1 |
|
value: 25.34866666666667 |
|
- type: recall_at_10 |
|
value: 55.40541666666666 |
|
- type: recall_at_100 |
|
value: 79.38683333333333 |
|
- type: recall_at_1000 |
|
value: 93.50958333333334 |
|
- type: recall_at_3 |
|
value: 39.99858333333334 |
|
- type: recall_at_5 |
|
value: 46.55741666666666 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.102000000000004 |
|
- type: map_at_10 |
|
value: 33.31 |
|
- type: map_at_100 |
|
value: 34.443 |
|
- type: map_at_1000 |
|
value: 34.547 |
|
- type: map_at_3 |
|
value: 30.932 |
|
- type: map_at_5 |
|
value: 32.126 |
|
- type: mrr_at_1 |
|
value: 28.221 |
|
- type: mrr_at_10 |
|
value: 36.519 |
|
- type: mrr_at_100 |
|
value: 37.425000000000004 |
|
- type: mrr_at_1000 |
|
value: 37.498 |
|
- type: mrr_at_3 |
|
value: 34.254 |
|
- type: mrr_at_5 |
|
value: 35.388999999999996 |
|
- type: ndcg_at_1 |
|
value: 28.221 |
|
- type: ndcg_at_10 |
|
value: 38.340999999999994 |
|
- type: ndcg_at_100 |
|
value: 43.572 |
|
- type: ndcg_at_1000 |
|
value: 45.979 |
|
- type: ndcg_at_3 |
|
value: 33.793 |
|
- type: ndcg_at_5 |
|
value: 35.681000000000004 |
|
- type: precision_at_1 |
|
value: 28.221 |
|
- type: precision_at_10 |
|
value: 6.135 |
|
- type: precision_at_100 |
|
value: 0.946 |
|
- type: precision_at_1000 |
|
value: 0.123 |
|
- type: precision_at_3 |
|
value: 14.519000000000002 |
|
- type: precision_at_5 |
|
value: 9.969 |
|
- type: recall_at_1 |
|
value: 25.102000000000004 |
|
- type: recall_at_10 |
|
value: 50.639 |
|
- type: recall_at_100 |
|
value: 74.075 |
|
- type: recall_at_1000 |
|
value: 91.393 |
|
- type: recall_at_3 |
|
value: 37.952000000000005 |
|
- type: recall_at_5 |
|
value: 42.71 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.618000000000002 |
|
- type: map_at_10 |
|
value: 26.714 |
|
- type: map_at_100 |
|
value: 27.929 |
|
- type: map_at_1000 |
|
value: 28.057 |
|
- type: map_at_3 |
|
value: 24.134 |
|
- type: map_at_5 |
|
value: 25.575 |
|
- type: mrr_at_1 |
|
value: 22.573999999999998 |
|
- type: mrr_at_10 |
|
value: 30.786 |
|
- type: mrr_at_100 |
|
value: 31.746000000000002 |
|
- type: mrr_at_1000 |
|
value: 31.822 |
|
- type: mrr_at_3 |
|
value: 28.412 |
|
- type: mrr_at_5 |
|
value: 29.818 |
|
- type: ndcg_at_1 |
|
value: 22.573999999999998 |
|
- type: ndcg_at_10 |
|
value: 31.852000000000004 |
|
- type: ndcg_at_100 |
|
value: 37.477 |
|
- type: ndcg_at_1000 |
|
value: 40.331 |
|
- type: ndcg_at_3 |
|
value: 27.314 |
|
- type: ndcg_at_5 |
|
value: 29.485 |
|
- type: precision_at_1 |
|
value: 22.573999999999998 |
|
- type: precision_at_10 |
|
value: 5.86 |
|
- type: precision_at_100 |
|
value: 1.012 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 13.099 |
|
- type: precision_at_5 |
|
value: 9.56 |
|
- type: recall_at_1 |
|
value: 18.618000000000002 |
|
- type: recall_at_10 |
|
value: 43.134 |
|
- type: recall_at_100 |
|
value: 68.294 |
|
- type: recall_at_1000 |
|
value: 88.283 |
|
- type: recall_at_3 |
|
value: 30.397999999999996 |
|
- type: recall_at_5 |
|
value: 35.998000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.76 |
|
- type: map_at_10 |
|
value: 37.569 |
|
- type: map_at_100 |
|
value: 38.784 |
|
- type: map_at_1000 |
|
value: 38.884 |
|
- type: map_at_3 |
|
value: 34.379 |
|
- type: map_at_5 |
|
value: 36.092999999999996 |
|
- type: mrr_at_1 |
|
value: 32.556000000000004 |
|
- type: mrr_at_10 |
|
value: 41.870000000000005 |
|
- type: mrr_at_100 |
|
value: 42.759 |
|
- type: mrr_at_1000 |
|
value: 42.806 |
|
- type: mrr_at_3 |
|
value: 39.086 |
|
- type: mrr_at_5 |
|
value: 40.574 |
|
- type: ndcg_at_1 |
|
value: 32.556000000000004 |
|
- type: ndcg_at_10 |
|
value: 43.382 |
|
- type: ndcg_at_100 |
|
value: 48.943 |
|
- type: ndcg_at_1000 |
|
value: 50.961999999999996 |
|
- type: ndcg_at_3 |
|
value: 37.758 |
|
- type: ndcg_at_5 |
|
value: 40.282000000000004 |
|
- type: precision_at_1 |
|
value: 32.556000000000004 |
|
- type: precision_at_10 |
|
value: 7.463 |
|
- type: precision_at_100 |
|
value: 1.1480000000000001 |
|
- type: precision_at_1000 |
|
value: 0.14300000000000002 |
|
- type: precision_at_3 |
|
value: 17.133000000000003 |
|
- type: precision_at_5 |
|
value: 12.164 |
|
- type: recall_at_1 |
|
value: 27.76 |
|
- type: recall_at_10 |
|
value: 56.71000000000001 |
|
- type: recall_at_100 |
|
value: 81.053 |
|
- type: recall_at_1000 |
|
value: 94.75 |
|
- type: recall_at_3 |
|
value: 41.387 |
|
- type: recall_at_5 |
|
value: 47.818 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.62 |
|
- type: map_at_10 |
|
value: 33.522999999999996 |
|
- type: map_at_100 |
|
value: 35.281 |
|
- type: map_at_1000 |
|
value: 35.504000000000005 |
|
- type: map_at_3 |
|
value: 30.314999999999998 |
|
- type: map_at_5 |
|
value: 32.065 |
|
- type: mrr_at_1 |
|
value: 28.458 |
|
- type: mrr_at_10 |
|
value: 38.371 |
|
- type: mrr_at_100 |
|
value: 39.548 |
|
- type: mrr_at_1000 |
|
value: 39.601 |
|
- type: mrr_at_3 |
|
value: 35.638999999999996 |
|
- type: mrr_at_5 |
|
value: 37.319 |
|
- type: ndcg_at_1 |
|
value: 28.458 |
|
- type: ndcg_at_10 |
|
value: 39.715 |
|
- type: ndcg_at_100 |
|
value: 46.394999999999996 |
|
- type: ndcg_at_1000 |
|
value: 48.943999999999996 |
|
- type: ndcg_at_3 |
|
value: 34.361999999999995 |
|
- type: ndcg_at_5 |
|
value: 37.006 |
|
- type: precision_at_1 |
|
value: 28.458 |
|
- type: precision_at_10 |
|
value: 7.5889999999999995 |
|
- type: precision_at_100 |
|
value: 1.514 |
|
- type: precision_at_1000 |
|
value: 0.242 |
|
- type: precision_at_3 |
|
value: 16.073999999999998 |
|
- type: precision_at_5 |
|
value: 11.976 |
|
- type: recall_at_1 |
|
value: 23.62 |
|
- type: recall_at_10 |
|
value: 52.117000000000004 |
|
- type: recall_at_100 |
|
value: 81.097 |
|
- type: recall_at_1000 |
|
value: 96.47 |
|
- type: recall_at_3 |
|
value: 37.537 |
|
- type: recall_at_5 |
|
value: 44.112 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.336 |
|
- type: map_at_10 |
|
value: 26.811 |
|
- type: map_at_100 |
|
value: 27.892 |
|
- type: map_at_1000 |
|
value: 27.986 |
|
- type: map_at_3 |
|
value: 23.976 |
|
- type: map_at_5 |
|
value: 25.605 |
|
- type: mrr_at_1 |
|
value: 20.148 |
|
- type: mrr_at_10 |
|
value: 28.898000000000003 |
|
- type: mrr_at_100 |
|
value: 29.866 |
|
- type: mrr_at_1000 |
|
value: 29.929 |
|
- type: mrr_at_3 |
|
value: 26.247999999999998 |
|
- type: mrr_at_5 |
|
value: 27.744999999999997 |
|
- type: ndcg_at_1 |
|
value: 20.148 |
|
- type: ndcg_at_10 |
|
value: 32.059 |
|
- type: ndcg_at_100 |
|
value: 37.495 |
|
- type: ndcg_at_1000 |
|
value: 39.855000000000004 |
|
- type: ndcg_at_3 |
|
value: 26.423000000000002 |
|
- type: ndcg_at_5 |
|
value: 29.212 |
|
- type: precision_at_1 |
|
value: 20.148 |
|
- type: precision_at_10 |
|
value: 5.268 |
|
- type: precision_at_100 |
|
value: 0.872 |
|
- type: precision_at_1000 |
|
value: 0.11900000000000001 |
|
- type: precision_at_3 |
|
value: 11.459999999999999 |
|
- type: precision_at_5 |
|
value: 8.503 |
|
- type: recall_at_1 |
|
value: 18.336 |
|
- type: recall_at_10 |
|
value: 46.411 |
|
- type: recall_at_100 |
|
value: 71.33500000000001 |
|
- type: recall_at_1000 |
|
value: 88.895 |
|
- type: recall_at_3 |
|
value: 31.134 |
|
- type: recall_at_5 |
|
value: 37.862 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.149 |
|
- type: map_at_10 |
|
value: 35.251 |
|
- type: map_at_100 |
|
value: 37.342 |
|
- type: map_at_1000 |
|
value: 37.516 |
|
- type: map_at_3 |
|
value: 30.543 |
|
- type: map_at_5 |
|
value: 33.19 |
|
- type: mrr_at_1 |
|
value: 47.687000000000005 |
|
- type: mrr_at_10 |
|
value: 59.391000000000005 |
|
- type: mrr_at_100 |
|
value: 59.946999999999996 |
|
- type: mrr_at_1000 |
|
value: 59.965999999999994 |
|
- type: mrr_at_3 |
|
value: 56.938 |
|
- type: mrr_at_5 |
|
value: 58.498000000000005 |
|
- type: ndcg_at_1 |
|
value: 47.687000000000005 |
|
- type: ndcg_at_10 |
|
value: 45.381 |
|
- type: ndcg_at_100 |
|
value: 52.405 |
|
- type: ndcg_at_1000 |
|
value: 55.041 |
|
- type: ndcg_at_3 |
|
value: 40.024 |
|
- type: ndcg_at_5 |
|
value: 41.821999999999996 |
|
- type: precision_at_1 |
|
value: 47.687000000000005 |
|
- type: precision_at_10 |
|
value: 13.355 |
|
- type: precision_at_100 |
|
value: 2.113 |
|
- type: precision_at_1000 |
|
value: 0.261 |
|
- type: precision_at_3 |
|
value: 29.793999999999997 |
|
- type: precision_at_5 |
|
value: 21.811 |
|
- type: recall_at_1 |
|
value: 21.149 |
|
- type: recall_at_10 |
|
value: 49.937 |
|
- type: recall_at_100 |
|
value: 73.382 |
|
- type: recall_at_1000 |
|
value: 87.606 |
|
- type: recall_at_3 |
|
value: 35.704 |
|
- type: recall_at_5 |
|
value: 42.309000000000005 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.74 |
|
- type: map_at_10 |
|
value: 41.981 |
|
- type: map_at_100 |
|
value: 43.753 |
|
- type: map_at_1000 |
|
value: 43.858999999999995 |
|
- type: map_at_3 |
|
value: 37.634 |
|
- type: map_at_5 |
|
value: 40.158 |
|
- type: mrr_at_1 |
|
value: 43.086 |
|
- type: mrr_at_10 |
|
value: 51.249 |
|
- type: mrr_at_100 |
|
value: 52.154 |
|
- type: mrr_at_1000 |
|
value: 52.190999999999995 |
|
- type: mrr_at_3 |
|
value: 48.787000000000006 |
|
- type: mrr_at_5 |
|
value: 50.193 |
|
- type: ndcg_at_1 |
|
value: 43.086 |
|
- type: ndcg_at_10 |
|
value: 48.703 |
|
- type: ndcg_at_100 |
|
value: 55.531 |
|
- type: ndcg_at_1000 |
|
value: 57.267999999999994 |
|
- type: ndcg_at_3 |
|
value: 43.464000000000006 |
|
- type: ndcg_at_5 |
|
value: 45.719 |
|
- type: precision_at_1 |
|
value: 43.086 |
|
- type: precision_at_10 |
|
value: 10.568 |
|
- type: precision_at_100 |
|
value: 1.616 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 24.256 |
|
- type: precision_at_5 |
|
value: 17.509 |
|
- type: recall_at_1 |
|
value: 28.74 |
|
- type: recall_at_10 |
|
value: 59.349 |
|
- type: recall_at_100 |
|
value: 87.466 |
|
- type: recall_at_1000 |
|
value: 98.914 |
|
- type: recall_at_3 |
|
value: 43.322 |
|
- type: recall_at_5 |
|
value: 50.409000000000006 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 79.03788334335539 |
|
- type: cos_sim_ap |
|
value: 87.21703260472833 |
|
- type: cos_sim_f1 |
|
value: 79.87784187309127 |
|
- type: cos_sim_precision |
|
value: 77.36634531113059 |
|
- type: cos_sim_recall |
|
value: 82.55786766425064 |
|
- type: dot_accuracy |
|
value: 79.03788334335539 |
|
- type: dot_ap |
|
value: 87.22906528217948 |
|
- type: dot_f1 |
|
value: 79.87784187309127 |
|
- type: dot_precision |
|
value: 77.36634531113059 |
|
- type: dot_recall |
|
value: 82.55786766425064 |
|
- type: euclidean_accuracy |
|
value: 79.03788334335539 |
|
- type: euclidean_ap |
|
value: 87.21703670465753 |
|
- type: euclidean_f1 |
|
value: 79.87784187309127 |
|
- type: euclidean_precision |
|
value: 77.36634531113059 |
|
- type: euclidean_recall |
|
value: 82.55786766425064 |
|
- type: manhattan_accuracy |
|
value: 78.28021647624774 |
|
- type: manhattan_ap |
|
value: 86.66244127855394 |
|
- type: manhattan_f1 |
|
value: 79.24485643228577 |
|
- type: manhattan_precision |
|
value: 76.71262858393521 |
|
- type: manhattan_recall |
|
value: 81.94996492868833 |
|
- type: max_accuracy |
|
value: 79.03788334335539 |
|
- type: max_ap |
|
value: 87.22906528217948 |
|
- type: max_f1 |
|
value: 79.87784187309127 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
metrics: |
|
- type: map_at_1 |
|
value: 67.597 |
|
- type: map_at_10 |
|
value: 75.81599999999999 |
|
- type: map_at_100 |
|
value: 76.226 |
|
- type: map_at_1000 |
|
value: 76.23100000000001 |
|
- type: map_at_3 |
|
value: 73.907 |
|
- type: map_at_5 |
|
value: 75.08200000000001 |
|
- type: mrr_at_1 |
|
value: 67.756 |
|
- type: mrr_at_10 |
|
value: 75.8 |
|
- type: mrr_at_100 |
|
value: 76.205 |
|
- type: mrr_at_1000 |
|
value: 76.21 |
|
- type: mrr_at_3 |
|
value: 73.955 |
|
- type: mrr_at_5 |
|
value: 75.093 |
|
- type: ndcg_at_1 |
|
value: 67.756 |
|
- type: ndcg_at_10 |
|
value: 79.598 |
|
- type: ndcg_at_100 |
|
value: 81.34400000000001 |
|
- type: ndcg_at_1000 |
|
value: 81.477 |
|
- type: ndcg_at_3 |
|
value: 75.876 |
|
- type: ndcg_at_5 |
|
value: 77.94200000000001 |
|
- type: precision_at_1 |
|
value: 67.756 |
|
- type: precision_at_10 |
|
value: 9.231 |
|
- type: precision_at_100 |
|
value: 1.0 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 27.362 |
|
- type: precision_at_5 |
|
value: 17.45 |
|
- type: recall_at_1 |
|
value: 67.597 |
|
- type: recall_at_10 |
|
value: 91.307 |
|
- type: recall_at_100 |
|
value: 98.946 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 81.428 |
|
- type: recall_at_5 |
|
value: 86.407 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.33 |
|
- type: map_at_10 |
|
value: 23.118 |
|
- type: map_at_100 |
|
value: 34.28 |
|
- type: map_at_1000 |
|
value: 36.574 |
|
- type: map_at_3 |
|
value: 15.576 |
|
- type: map_at_5 |
|
value: 18.778 |
|
- type: mrr_at_1 |
|
value: 75.25 |
|
- type: mrr_at_10 |
|
value: 81.958 |
|
- type: mrr_at_100 |
|
value: 82.282 |
|
- type: mrr_at_1000 |
|
value: 82.285 |
|
- type: mrr_at_3 |
|
value: 81.042 |
|
- type: mrr_at_5 |
|
value: 81.62899999999999 |
|
- type: ndcg_at_1 |
|
value: 63.625 |
|
- type: ndcg_at_10 |
|
value: 50.781 |
|
- type: ndcg_at_100 |
|
value: 55.537000000000006 |
|
- type: ndcg_at_1000 |
|
value: 62.651 |
|
- type: ndcg_at_3 |
|
value: 55.297 |
|
- type: ndcg_at_5 |
|
value: 53.103 |
|
- type: precision_at_1 |
|
value: 75.25 |
|
- type: precision_at_10 |
|
value: 41.475 |
|
- type: precision_at_100 |
|
value: 13.5 |
|
- type: precision_at_1000 |
|
value: 2.686 |
|
- type: precision_at_3 |
|
value: 59.333000000000006 |
|
- type: precision_at_5 |
|
value: 51.9 |
|
- type: recall_at_1 |
|
value: 9.33 |
|
- type: recall_at_10 |
|
value: 29.398000000000003 |
|
- type: recall_at_100 |
|
value: 61.951 |
|
- type: recall_at_1000 |
|
value: 85.463 |
|
- type: recall_at_3 |
|
value: 17.267 |
|
- type: recall_at_5 |
|
value: 21.89 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.608999999999998 |
|
- type: map_at_10 |
|
value: 78.649 |
|
- type: map_at_100 |
|
value: 81.67699999999999 |
|
- type: map_at_1000 |
|
value: 81.71000000000001 |
|
- type: map_at_3 |
|
value: 54.112 |
|
- type: map_at_5 |
|
value: 68.34700000000001 |
|
- type: mrr_at_1 |
|
value: 87.75 |
|
- type: mrr_at_10 |
|
value: 92.175 |
|
- type: mrr_at_100 |
|
value: 92.225 |
|
- type: mrr_at_1000 |
|
value: 92.227 |
|
- type: mrr_at_3 |
|
value: 91.833 |
|
- type: mrr_at_5 |
|
value: 92.06800000000001 |
|
- type: ndcg_at_1 |
|
value: 87.75 |
|
- type: ndcg_at_10 |
|
value: 86.56700000000001 |
|
- type: ndcg_at_100 |
|
value: 89.519 |
|
- type: ndcg_at_1000 |
|
value: 89.822 |
|
- type: ndcg_at_3 |
|
value: 84.414 |
|
- type: ndcg_at_5 |
|
value: 83.721 |
|
- type: precision_at_1 |
|
value: 87.75 |
|
- type: precision_at_10 |
|
value: 41.665 |
|
- type: precision_at_100 |
|
value: 4.827 |
|
- type: precision_at_1000 |
|
value: 0.49 |
|
- type: precision_at_3 |
|
value: 75.533 |
|
- type: precision_at_5 |
|
value: 64.01 |
|
- type: recall_at_1 |
|
value: 25.608999999999998 |
|
- type: recall_at_10 |
|
value: 88.708 |
|
- type: recall_at_100 |
|
value: 98.007 |
|
- type: recall_at_1000 |
|
value: 99.555 |
|
- type: recall_at_3 |
|
value: 57.157000000000004 |
|
- type: recall_at_5 |
|
value: 74.118 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.800000000000004 |
|
- type: map_at_10 |
|
value: 65.952 |
|
- type: map_at_100 |
|
value: 66.413 |
|
- type: map_at_1000 |
|
value: 66.426 |
|
- type: map_at_3 |
|
value: 63.3 |
|
- type: map_at_5 |
|
value: 64.945 |
|
- type: mrr_at_1 |
|
value: 55.800000000000004 |
|
- type: mrr_at_10 |
|
value: 65.952 |
|
- type: mrr_at_100 |
|
value: 66.413 |
|
- type: mrr_at_1000 |
|
value: 66.426 |
|
- type: mrr_at_3 |
|
value: 63.3 |
|
- type: mrr_at_5 |
|
value: 64.945 |
|
- type: ndcg_at_1 |
|
value: 55.800000000000004 |
|
- type: ndcg_at_10 |
|
value: 71.00800000000001 |
|
- type: ndcg_at_100 |
|
value: 72.974 |
|
- type: ndcg_at_1000 |
|
value: 73.302 |
|
- type: ndcg_at_3 |
|
value: 65.669 |
|
- type: ndcg_at_5 |
|
value: 68.634 |
|
- type: precision_at_1 |
|
value: 55.800000000000004 |
|
- type: precision_at_10 |
|
value: 8.690000000000001 |
|
- type: precision_at_100 |
|
value: 0.955 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 24.166999999999998 |
|
- type: precision_at_5 |
|
value: 15.939999999999998 |
|
- type: recall_at_1 |
|
value: 55.800000000000004 |
|
- type: recall_at_10 |
|
value: 86.9 |
|
- type: recall_at_100 |
|
value: 95.5 |
|
- type: recall_at_1000 |
|
value: 98.0 |
|
- type: recall_at_3 |
|
value: 72.5 |
|
- type: recall_at_5 |
|
value: 79.7 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 67.39500000000001 |
|
- type: f1 |
|
value: 62.01837785021389 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 86.27 |
|
- type: map_at_10 |
|
value: 92.163 |
|
- type: map_at_100 |
|
value: 92.351 |
|
- type: map_at_1000 |
|
value: 92.36 |
|
- type: map_at_3 |
|
value: 91.36 |
|
- type: map_at_5 |
|
value: 91.888 |
|
- type: mrr_at_1 |
|
value: 92.72399999999999 |
|
- type: mrr_at_10 |
|
value: 95.789 |
|
- type: mrr_at_100 |
|
value: 95.80300000000001 |
|
- type: mrr_at_1000 |
|
value: 95.804 |
|
- type: mrr_at_3 |
|
value: 95.64200000000001 |
|
- type: mrr_at_5 |
|
value: 95.75 |
|
- type: ndcg_at_1 |
|
value: 92.72399999999999 |
|
- type: ndcg_at_10 |
|
value: 94.269 |
|
- type: ndcg_at_100 |
|
value: 94.794 |
|
- type: ndcg_at_1000 |
|
value: 94.94 |
|
- type: ndcg_at_3 |
|
value: 93.427 |
|
- type: ndcg_at_5 |
|
value: 93.914 |
|
- type: precision_at_1 |
|
value: 92.72399999999999 |
|
- type: precision_at_10 |
|
value: 11.007 |
|
- type: precision_at_100 |
|
value: 1.153 |
|
- type: precision_at_1000 |
|
value: 0.11800000000000001 |
|
- type: precision_at_3 |
|
value: 34.993 |
|
- type: precision_at_5 |
|
value: 21.542 |
|
- type: recall_at_1 |
|
value: 86.27 |
|
- type: recall_at_10 |
|
value: 97.031 |
|
- type: recall_at_100 |
|
value: 98.839 |
|
- type: recall_at_1000 |
|
value: 99.682 |
|
- type: recall_at_3 |
|
value: 94.741 |
|
- type: recall_at_5 |
|
value: 96.03 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 29.561999999999998 |
|
- type: map_at_10 |
|
value: 48.52 |
|
- type: map_at_100 |
|
value: 50.753 |
|
- type: map_at_1000 |
|
value: 50.878 |
|
- type: map_at_3 |
|
value: 42.406 |
|
- type: map_at_5 |
|
value: 45.994 |
|
- type: mrr_at_1 |
|
value: 54.784 |
|
- type: mrr_at_10 |
|
value: 64.51400000000001 |
|
- type: mrr_at_100 |
|
value: 65.031 |
|
- type: mrr_at_1000 |
|
value: 65.05199999999999 |
|
- type: mrr_at_3 |
|
value: 62.474 |
|
- type: mrr_at_5 |
|
value: 63.562 |
|
- type: ndcg_at_1 |
|
value: 54.784 |
|
- type: ndcg_at_10 |
|
value: 57.138 |
|
- type: ndcg_at_100 |
|
value: 63.666999999999994 |
|
- type: ndcg_at_1000 |
|
value: 65.379 |
|
- type: ndcg_at_3 |
|
value: 52.589 |
|
- type: ndcg_at_5 |
|
value: 54.32599999999999 |
|
- type: precision_at_1 |
|
value: 54.784 |
|
- type: precision_at_10 |
|
value: 15.693999999999999 |
|
- type: precision_at_100 |
|
value: 2.259 |
|
- type: precision_at_1000 |
|
value: 0.256 |
|
- type: precision_at_3 |
|
value: 34.774 |
|
- type: precision_at_5 |
|
value: 25.772000000000002 |
|
- type: recall_at_1 |
|
value: 29.561999999999998 |
|
- type: recall_at_10 |
|
value: 64.708 |
|
- type: recall_at_100 |
|
value: 87.958 |
|
- type: recall_at_1000 |
|
value: 97.882 |
|
- type: recall_at_3 |
|
value: 48.394 |
|
- type: recall_at_5 |
|
value: 56.101 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 43.72 |
|
- type: map_at_10 |
|
value: 71.905 |
|
- type: map_at_100 |
|
value: 72.685 |
|
- type: map_at_1000 |
|
value: 72.72800000000001 |
|
- type: map_at_3 |
|
value: 68.538 |
|
- type: map_at_5 |
|
value: 70.675 |
|
- type: mrr_at_1 |
|
value: 87.441 |
|
- type: mrr_at_10 |
|
value: 91.432 |
|
- type: mrr_at_100 |
|
value: 91.512 |
|
- type: mrr_at_1000 |
|
value: 91.513 |
|
- type: mrr_at_3 |
|
value: 90.923 |
|
- type: mrr_at_5 |
|
value: 91.252 |
|
- type: ndcg_at_1 |
|
value: 87.441 |
|
- type: ndcg_at_10 |
|
value: 79.212 |
|
- type: ndcg_at_100 |
|
value: 81.694 |
|
- type: ndcg_at_1000 |
|
value: 82.447 |
|
- type: ndcg_at_3 |
|
value: 74.746 |
|
- type: ndcg_at_5 |
|
value: 77.27199999999999 |
|
- type: precision_at_1 |
|
value: 87.441 |
|
- type: precision_at_10 |
|
value: 16.42 |
|
- type: precision_at_100 |
|
value: 1.833 |
|
- type: precision_at_1000 |
|
value: 0.193 |
|
- type: precision_at_3 |
|
value: 48.184 |
|
- type: precision_at_5 |
|
value: 30.897999999999996 |
|
- type: recall_at_1 |
|
value: 43.72 |
|
- type: recall_at_10 |
|
value: 82.1 |
|
- type: recall_at_100 |
|
value: 91.62700000000001 |
|
- type: recall_at_1000 |
|
value: 96.556 |
|
- type: recall_at_3 |
|
value: 72.275 |
|
- type: recall_at_5 |
|
value: 77.24499999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: 421605374b29664c5fc098418fe20ada9bd55f8a |
|
metrics: |
|
- type: accuracy |
|
value: 54.520969603693736 |
|
- type: f1 |
|
value: 42.359043311419626 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 96.72559999999999 |
|
- type: ap |
|
value: 95.01759461773742 |
|
- type: f1 |
|
value: 96.72429945397575 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b |
|
metrics: |
|
- type: accuracy |
|
value: 90.1688555347092 |
|
- type: ap |
|
value: 63.36583667477521 |
|
- type: f1 |
|
value: 85.6845016521436 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 67.35114066823127 |
|
- type: cos_sim_spearman |
|
value: 72.98875207056305 |
|
- type: euclidean_pearson |
|
value: 71.45620183630378 |
|
- type: euclidean_spearman |
|
value: 72.98875207022671 |
|
- type: manhattan_pearson |
|
value: 71.3845159780333 |
|
- type: manhattan_spearman |
|
value: 72.92710990543166 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 |
|
metrics: |
|
- type: map |
|
value: 32.68592539803807 |
|
- type: mrr |
|
value: 31.58968253968254 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 71.242 |
|
- type: map_at_10 |
|
value: 80.01 |
|
- type: map_at_100 |
|
value: 80.269 |
|
- type: map_at_1000 |
|
value: 80.276 |
|
- type: map_at_3 |
|
value: 78.335 |
|
- type: map_at_5 |
|
value: 79.471 |
|
- type: mrr_at_1 |
|
value: 73.668 |
|
- type: mrr_at_10 |
|
value: 80.515 |
|
- type: mrr_at_100 |
|
value: 80.738 |
|
- type: mrr_at_1000 |
|
value: 80.744 |
|
- type: mrr_at_3 |
|
value: 79.097 |
|
- type: mrr_at_5 |
|
value: 80.045 |
|
- type: ndcg_at_1 |
|
value: 73.668 |
|
- type: ndcg_at_10 |
|
value: 83.357 |
|
- type: ndcg_at_100 |
|
value: 84.442 |
|
- type: ndcg_at_1000 |
|
value: 84.619 |
|
- type: ndcg_at_3 |
|
value: 80.286 |
|
- type: ndcg_at_5 |
|
value: 82.155 |
|
- type: precision_at_1 |
|
value: 73.668 |
|
- type: precision_at_10 |
|
value: 9.905 |
|
- type: precision_at_100 |
|
value: 1.043 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 30.024 |
|
- type: precision_at_5 |
|
value: 19.017 |
|
- type: recall_at_1 |
|
value: 71.242 |
|
- type: recall_at_10 |
|
value: 93.11 |
|
- type: recall_at_100 |
|
value: 97.85000000000001 |
|
- type: recall_at_1000 |
|
value: 99.21900000000001 |
|
- type: recall_at_3 |
|
value: 85.137 |
|
- type: recall_at_5 |
|
value: 89.548 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.006999999999998 |
|
- type: map_at_10 |
|
value: 34.994 |
|
- type: map_at_100 |
|
value: 36.183 |
|
- type: map_at_1000 |
|
value: 36.227 |
|
- type: map_at_3 |
|
value: 30.75 |
|
- type: map_at_5 |
|
value: 33.155 |
|
- type: mrr_at_1 |
|
value: 22.679 |
|
- type: mrr_at_10 |
|
value: 35.619 |
|
- type: mrr_at_100 |
|
value: 36.732 |
|
- type: mrr_at_1000 |
|
value: 36.77 |
|
- type: mrr_at_3 |
|
value: 31.44 |
|
- type: mrr_at_5 |
|
value: 33.811 |
|
- type: ndcg_at_1 |
|
value: 22.679 |
|
- type: ndcg_at_10 |
|
value: 42.376000000000005 |
|
- type: ndcg_at_100 |
|
value: 48.001 |
|
- type: ndcg_at_1000 |
|
value: 49.059999999999995 |
|
- type: ndcg_at_3 |
|
value: 33.727000000000004 |
|
- type: ndcg_at_5 |
|
value: 38.013000000000005 |
|
- type: precision_at_1 |
|
value: 22.679 |
|
- type: precision_at_10 |
|
value: 6.815 |
|
- type: precision_at_100 |
|
value: 0.962 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 14.441 |
|
- type: precision_at_5 |
|
value: 10.817 |
|
- type: recall_at_1 |
|
value: 22.006999999999998 |
|
- type: recall_at_10 |
|
value: 65.158 |
|
- type: recall_at_100 |
|
value: 90.997 |
|
- type: recall_at_1000 |
|
value: 98.996 |
|
- type: recall_at_3 |
|
value: 41.646 |
|
- type: recall_at_5 |
|
value: 51.941 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 97.55129958960327 |
|
- type: f1 |
|
value: 97.43464802675416 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 90.4719562243502 |
|
- type: f1 |
|
value: 70.76460034443902 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 83.49024882313383 |
|
- type: f1 |
|
value: 81.44067057564666 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 79.88231338264963 |
|
- type: f1 |
|
value: 77.13536609019927 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 87.23268325487558 |
|
- type: f1 |
|
value: 86.36737921996752 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 84.50571620712844 |
|
- type: f1 |
|
value: 83.4128768262944 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
metrics: |
|
- type: map_at_1 |
|
value: 56.89999999999999 |
|
- type: map_at_10 |
|
value: 63.438 |
|
- type: map_at_100 |
|
value: 63.956 |
|
- type: map_at_1000 |
|
value: 63.991 |
|
- type: map_at_3 |
|
value: 61.983 |
|
- type: map_at_5 |
|
value: 62.778 |
|
- type: mrr_at_1 |
|
value: 56.99999999999999 |
|
- type: mrr_at_10 |
|
value: 63.483000000000004 |
|
- type: mrr_at_100 |
|
value: 63.993 |
|
- type: mrr_at_1000 |
|
value: 64.02799999999999 |
|
- type: mrr_at_3 |
|
value: 62.017 |
|
- type: mrr_at_5 |
|
value: 62.812 |
|
- type: ndcg_at_1 |
|
value: 56.89999999999999 |
|
- type: ndcg_at_10 |
|
value: 66.61 |
|
- type: ndcg_at_100 |
|
value: 69.387 |
|
- type: ndcg_at_1000 |
|
value: 70.327 |
|
- type: ndcg_at_3 |
|
value: 63.583999999999996 |
|
- type: ndcg_at_5 |
|
value: 65.0 |
|
- type: precision_at_1 |
|
value: 56.89999999999999 |
|
- type: precision_at_10 |
|
value: 7.66 |
|
- type: precision_at_100 |
|
value: 0.902 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 22.733 |
|
- type: precision_at_5 |
|
value: 14.32 |
|
- type: recall_at_1 |
|
value: 56.89999999999999 |
|
- type: recall_at_10 |
|
value: 76.6 |
|
- type: recall_at_100 |
|
value: 90.2 |
|
- type: recall_at_1000 |
|
value: 97.6 |
|
- type: recall_at_3 |
|
value: 68.2 |
|
- type: recall_at_5 |
|
value: 71.6 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 40.32149153753394 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 39.40319973495386 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 33.9769104898534 |
|
- type: mrr |
|
value: 35.32831430710564 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a |
|
metrics: |
|
- type: accuracy |
|
value: 81.80666666666667 |
|
- type: f1 |
|
value: 81.83278699395508 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.3 |
|
- type: map_at_10 |
|
value: 14.151 |
|
- type: map_at_100 |
|
value: 18.455 |
|
- type: map_at_1000 |
|
value: 20.186999999999998 |
|
- type: map_at_3 |
|
value: 10.023 |
|
- type: map_at_5 |
|
value: 11.736 |
|
- type: mrr_at_1 |
|
value: 49.536 |
|
- type: mrr_at_10 |
|
value: 58.516 |
|
- type: mrr_at_100 |
|
value: 59.084 |
|
- type: mrr_at_1000 |
|
value: 59.114 |
|
- type: mrr_at_3 |
|
value: 56.45 |
|
- type: mrr_at_5 |
|
value: 57.642 |
|
- type: ndcg_at_1 |
|
value: 47.522999999999996 |
|
- type: ndcg_at_10 |
|
value: 38.4 |
|
- type: ndcg_at_100 |
|
value: 35.839999999999996 |
|
- type: ndcg_at_1000 |
|
value: 44.998 |
|
- type: ndcg_at_3 |
|
value: 43.221 |
|
- type: ndcg_at_5 |
|
value: 40.784 |
|
- type: precision_at_1 |
|
value: 49.536 |
|
- type: precision_at_10 |
|
value: 28.977999999999998 |
|
- type: precision_at_100 |
|
value: 9.378 |
|
- type: precision_at_1000 |
|
value: 2.2769999999999997 |
|
- type: precision_at_3 |
|
value: 40.454 |
|
- type: precision_at_5 |
|
value: 35.418 |
|
- type: recall_at_1 |
|
value: 6.3 |
|
- type: recall_at_10 |
|
value: 19.085 |
|
- type: recall_at_100 |
|
value: 38.18 |
|
- type: recall_at_1000 |
|
value: 71.219 |
|
- type: recall_at_3 |
|
value: 11.17 |
|
- type: recall_at_5 |
|
value: 13.975999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 43.262 |
|
- type: map_at_10 |
|
value: 60.387 |
|
- type: map_at_100 |
|
value: 61.102000000000004 |
|
- type: map_at_1000 |
|
value: 61.111000000000004 |
|
- type: map_at_3 |
|
value: 56.391999999999996 |
|
- type: map_at_5 |
|
value: 58.916000000000004 |
|
- type: mrr_at_1 |
|
value: 48.725 |
|
- type: mrr_at_10 |
|
value: 62.812999999999995 |
|
- type: mrr_at_100 |
|
value: 63.297000000000004 |
|
- type: mrr_at_1000 |
|
value: 63.304 |
|
- type: mrr_at_3 |
|
value: 59.955999999999996 |
|
- type: mrr_at_5 |
|
value: 61.785999999999994 |
|
- type: ndcg_at_1 |
|
value: 48.696 |
|
- type: ndcg_at_10 |
|
value: 67.743 |
|
- type: ndcg_at_100 |
|
value: 70.404 |
|
- type: ndcg_at_1000 |
|
value: 70.60600000000001 |
|
- type: ndcg_at_3 |
|
value: 60.712999999999994 |
|
- type: ndcg_at_5 |
|
value: 64.693 |
|
- type: precision_at_1 |
|
value: 48.696 |
|
- type: precision_at_10 |
|
value: 10.513 |
|
- type: precision_at_100 |
|
value: 1.196 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 27.221 |
|
- type: precision_at_5 |
|
value: 18.701999999999998 |
|
- type: recall_at_1 |
|
value: 43.262 |
|
- type: recall_at_10 |
|
value: 87.35300000000001 |
|
- type: recall_at_100 |
|
value: 98.31299999999999 |
|
- type: recall_at_1000 |
|
value: 99.797 |
|
- type: recall_at_3 |
|
value: 69.643 |
|
- type: recall_at_5 |
|
value: 78.645 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: 66e76a618a34d6d565d5538088562851e6daa7ec |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 72.65836491608013 |
|
- type: cos_sim_ap |
|
value: 78.75807247519593 |
|
- type: cos_sim_f1 |
|
value: 74.84662576687117 |
|
- type: cos_sim_precision |
|
value: 63.97003745318352 |
|
- type: cos_sim_recall |
|
value: 90.17951425554382 |
|
- type: dot_accuracy |
|
value: 72.65836491608013 |
|
- type: dot_ap |
|
value: 78.75807247519593 |
|
- type: dot_f1 |
|
value: 74.84662576687117 |
|
- type: dot_precision |
|
value: 63.97003745318352 |
|
- type: dot_recall |
|
value: 90.17951425554382 |
|
- type: euclidean_accuracy |
|
value: 72.65836491608013 |
|
- type: euclidean_ap |
|
value: 78.75807247519593 |
|
- type: euclidean_f1 |
|
value: 74.84662576687117 |
|
- type: euclidean_precision |
|
value: 63.97003745318352 |
|
- type: euclidean_recall |
|
value: 90.17951425554382 |
|
- type: manhattan_accuracy |
|
value: 72.00866269626421 |
|
- type: manhattan_ap |
|
value: 78.34663376353235 |
|
- type: manhattan_f1 |
|
value: 74.13234613604813 |
|
- type: manhattan_precision |
|
value: 65.98023064250413 |
|
- type: manhattan_recall |
|
value: 84.58289334741288 |
|
- type: max_accuracy |
|
value: 72.65836491608013 |
|
- type: max_ap |
|
value: 78.75807247519593 |
|
- type: max_f1 |
|
value: 74.84662576687117 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: e610f2ebd179a8fda30ae534c3878750a96db120 |
|
metrics: |
|
- type: accuracy |
|
value: 94.46999999999998 |
|
- type: ap |
|
value: 93.56401511160975 |
|
- type: f1 |
|
value: 94.46692790889986 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 46.851404503762474 |
|
- type: cos_sim_spearman |
|
value: 52.74603680597415 |
|
- type: euclidean_pearson |
|
value: 51.596358967977295 |
|
- type: euclidean_spearman |
|
value: 52.74603680597415 |
|
- type: manhattan_pearson |
|
value: 51.81838023379299 |
|
- type: manhattan_spearman |
|
value: 52.79611669731429 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.928376136347016 |
|
- type: cos_sim_spearman |
|
value: 34.38497204533162 |
|
- type: euclidean_pearson |
|
value: 32.658432953090674 |
|
- type: euclidean_spearman |
|
value: 34.38497204533162 |
|
- type: manhattan_pearson |
|
value: 32.887190283203054 |
|
- type: manhattan_spearman |
|
value: 34.69496960849327 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.952 |
|
- type: map_at_10 |
|
value: 84.134 |
|
- type: map_at_100 |
|
value: 84.795 |
|
- type: map_at_1000 |
|
value: 84.809 |
|
- type: map_at_3 |
|
value: 81.085 |
|
- type: map_at_5 |
|
value: 82.976 |
|
- type: mrr_at_1 |
|
value: 80.56 |
|
- type: mrr_at_10 |
|
value: 87.105 |
|
- type: mrr_at_100 |
|
value: 87.20700000000001 |
|
- type: mrr_at_1000 |
|
value: 87.208 |
|
- type: mrr_at_3 |
|
value: 86.118 |
|
- type: mrr_at_5 |
|
value: 86.79299999999999 |
|
- type: ndcg_at_1 |
|
value: 80.57 |
|
- type: ndcg_at_10 |
|
value: 88.047 |
|
- type: ndcg_at_100 |
|
value: 89.266 |
|
- type: ndcg_at_1000 |
|
value: 89.34299999999999 |
|
- type: ndcg_at_3 |
|
value: 85.052 |
|
- type: ndcg_at_5 |
|
value: 86.68299999999999 |
|
- type: precision_at_1 |
|
value: 80.57 |
|
- type: precision_at_10 |
|
value: 13.439 |
|
- type: precision_at_100 |
|
value: 1.536 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 37.283 |
|
- type: precision_at_5 |
|
value: 24.558 |
|
- type: recall_at_1 |
|
value: 69.952 |
|
- type: recall_at_10 |
|
value: 95.599 |
|
- type: recall_at_100 |
|
value: 99.67099999999999 |
|
- type: recall_at_1000 |
|
value: 99.983 |
|
- type: recall_at_3 |
|
value: 87.095 |
|
- type: recall_at_5 |
|
value: 91.668 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 70.12802769698337 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 71.19047621740276 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.208 |
|
- type: map_at_10 |
|
value: 17.036 |
|
- type: map_at_100 |
|
value: 20.162 |
|
- type: map_at_1000 |
|
value: 20.552 |
|
- type: map_at_3 |
|
value: 11.591999999999999 |
|
- type: map_at_5 |
|
value: 14.349 |
|
- type: mrr_at_1 |
|
value: 30.599999999999998 |
|
- type: mrr_at_10 |
|
value: 43.325 |
|
- type: mrr_at_100 |
|
value: 44.281 |
|
- type: mrr_at_1000 |
|
value: 44.31 |
|
- type: mrr_at_3 |
|
value: 39.300000000000004 |
|
- type: mrr_at_5 |
|
value: 41.730000000000004 |
|
- type: ndcg_at_1 |
|
value: 30.599999999999998 |
|
- type: ndcg_at_10 |
|
value: 27.378000000000004 |
|
- type: ndcg_at_100 |
|
value: 37.768 |
|
- type: ndcg_at_1000 |
|
value: 43.275000000000006 |
|
- type: ndcg_at_3 |
|
value: 25.167 |
|
- type: ndcg_at_5 |
|
value: 22.537 |
|
- type: precision_at_1 |
|
value: 30.599999999999998 |
|
- type: precision_at_10 |
|
value: 14.46 |
|
- type: precision_at_100 |
|
value: 2.937 |
|
- type: precision_at_1000 |
|
value: 0.424 |
|
- type: precision_at_3 |
|
value: 23.666999999999998 |
|
- type: precision_at_5 |
|
value: 20.14 |
|
- type: recall_at_1 |
|
value: 6.208 |
|
- type: recall_at_10 |
|
value: 29.29 |
|
- type: recall_at_100 |
|
value: 59.565 |
|
- type: recall_at_1000 |
|
value: 85.963 |
|
- type: recall_at_3 |
|
value: 14.407 |
|
- type: recall_at_5 |
|
value: 20.412 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.65489797062479 |
|
- type: cos_sim_spearman |
|
value: 75.34808277034776 |
|
- type: euclidean_pearson |
|
value: 79.28097508609059 |
|
- type: euclidean_spearman |
|
value: 75.3480824481771 |
|
- type: manhattan_pearson |
|
value: 78.83529262858895 |
|
- type: manhattan_spearman |
|
value: 74.96318170787025 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.06920163624117 |
|
- type: cos_sim_spearman |
|
value: 77.24549887905519 |
|
- type: euclidean_pearson |
|
value: 85.58740280635266 |
|
- type: euclidean_spearman |
|
value: 77.24652170306867 |
|
- type: manhattan_pearson |
|
value: 85.77917470895854 |
|
- type: manhattan_spearman |
|
value: 77.54426264008778 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.9762185094084 |
|
- type: cos_sim_spearman |
|
value: 80.98090253728394 |
|
- type: euclidean_pearson |
|
value: 80.88451512135202 |
|
- type: euclidean_spearman |
|
value: 80.98090253728394 |
|
- type: manhattan_pearson |
|
value: 80.7606664599805 |
|
- type: manhattan_spearman |
|
value: 80.87197716950068 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.91239166620251 |
|
- type: cos_sim_spearman |
|
value: 76.36798509005328 |
|
- type: euclidean_pearson |
|
value: 80.6393872615655 |
|
- type: euclidean_spearman |
|
value: 76.36798836339655 |
|
- type: manhattan_pearson |
|
value: 80.50765898709096 |
|
- type: manhattan_spearman |
|
value: 76.31958999372227 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 83.68800355225011 |
|
- type: cos_sim_spearman |
|
value: 84.47549220803403 |
|
- type: euclidean_pearson |
|
value: 83.86859896384159 |
|
- type: euclidean_spearman |
|
value: 84.47551564954756 |
|
- type: manhattan_pearson |
|
value: 83.74201103044383 |
|
- type: manhattan_spearman |
|
value: 84.39903759718152 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.24197302553398 |
|
- type: cos_sim_spearman |
|
value: 79.44526946553684 |
|
- type: euclidean_pearson |
|
value: 79.12747636563053 |
|
- type: euclidean_spearman |
|
value: 79.44526946553684 |
|
- type: manhattan_pearson |
|
value: 78.94407504115144 |
|
- type: manhattan_spearman |
|
value: 79.24858249553934 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.15329071763895 |
|
- type: cos_sim_spearman |
|
value: 88.67251952242073 |
|
- type: euclidean_pearson |
|
value: 89.16908249259637 |
|
- type: euclidean_spearman |
|
value: 88.67251952242073 |
|
- type: manhattan_pearson |
|
value: 89.1279735094785 |
|
- type: manhattan_spearman |
|
value: 88.81731953658254 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.44962535524695 |
|
- type: cos_sim_spearman |
|
value: 71.75861316291065 |
|
- type: euclidean_pearson |
|
value: 72.42347748883483 |
|
- type: euclidean_spearman |
|
value: 71.75861316291065 |
|
- type: manhattan_pearson |
|
value: 72.57545073534365 |
|
- type: manhattan_spearman |
|
value: 71.90087671205625 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.9945443484093 |
|
- type: cos_sim_spearman |
|
value: 71.46807157842791 |
|
- type: euclidean_pearson |
|
value: 69.24911748374225 |
|
- type: euclidean_spearman |
|
value: 69.46807157842791 |
|
- type: manhattan_pearson |
|
value: 69.65580071876552 |
|
- type: manhattan_spearman |
|
value: 69.68775795734852 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.39283860361535 |
|
- type: cos_sim_spearman |
|
value: 77.14577975930179 |
|
- type: euclidean_pearson |
|
value: 76.64560889817044 |
|
- type: euclidean_spearman |
|
value: 77.14577975930179 |
|
- type: manhattan_pearson |
|
value: 76.82848456242104 |
|
- type: manhattan_spearman |
|
value: 77.37708521460667 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.14036697885552 |
|
- type: cos_sim_spearman |
|
value: 83.10901632378086 |
|
- type: euclidean_pearson |
|
value: 83.59991244380554 |
|
- type: euclidean_spearman |
|
value: 83.10901632378086 |
|
- type: manhattan_pearson |
|
value: 83.56632266895113 |
|
- type: manhattan_spearman |
|
value: 83.17610542379353 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 88.98026856845443 |
|
- type: mrr |
|
value: 96.80987494712984 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 41.661 |
|
- type: map_at_10 |
|
value: 55.492 |
|
- type: map_at_100 |
|
value: 56.237 |
|
- type: map_at_1000 |
|
value: 56.255 |
|
- type: map_at_3 |
|
value: 51.05 |
|
- type: map_at_5 |
|
value: 54.01200000000001 |
|
- type: mrr_at_1 |
|
value: 44.0 |
|
- type: mrr_at_10 |
|
value: 56.443 |
|
- type: mrr_at_100 |
|
value: 57.13700000000001 |
|
- type: mrr_at_1000 |
|
value: 57.152 |
|
- type: mrr_at_3 |
|
value: 52.944 |
|
- type: mrr_at_5 |
|
value: 55.37800000000001 |
|
- type: ndcg_at_1 |
|
value: 44.0 |
|
- type: ndcg_at_10 |
|
value: 62.312999999999995 |
|
- type: ndcg_at_100 |
|
value: 65.63900000000001 |
|
- type: ndcg_at_1000 |
|
value: 66.019 |
|
- type: ndcg_at_3 |
|
value: 54.67999999999999 |
|
- type: ndcg_at_5 |
|
value: 59.284000000000006 |
|
- type: precision_at_1 |
|
value: 44.0 |
|
- type: precision_at_10 |
|
value: 9.367 |
|
- type: precision_at_100 |
|
value: 1.0999999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 22.778000000000002 |
|
- type: precision_at_5 |
|
value: 16.467000000000002 |
|
- type: recall_at_1 |
|
value: 41.661 |
|
- type: recall_at_10 |
|
value: 82.306 |
|
- type: recall_at_100 |
|
value: 97.167 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 62.461 |
|
- type: recall_at_5 |
|
value: 73.411 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.90693069306931 |
|
- type: cos_sim_ap |
|
value: 97.86562522779887 |
|
- type: cos_sim_f1 |
|
value: 95.27162977867204 |
|
- type: cos_sim_precision |
|
value: 95.8502024291498 |
|
- type: cos_sim_recall |
|
value: 94.69999999999999 |
|
- type: dot_accuracy |
|
value: 99.90693069306931 |
|
- type: dot_ap |
|
value: 97.86562522779887 |
|
- type: dot_f1 |
|
value: 95.27162977867204 |
|
- type: dot_precision |
|
value: 95.8502024291498 |
|
- type: dot_recall |
|
value: 94.69999999999999 |
|
- type: euclidean_accuracy |
|
value: 99.90693069306931 |
|
- type: euclidean_ap |
|
value: 97.86562522779887 |
|
- type: euclidean_f1 |
|
value: 95.27162977867204 |
|
- type: euclidean_precision |
|
value: 95.8502024291498 |
|
- type: euclidean_recall |
|
value: 94.69999999999999 |
|
- type: manhattan_accuracy |
|
value: 99.90693069306931 |
|
- type: manhattan_ap |
|
value: 97.85527044211135 |
|
- type: manhattan_f1 |
|
value: 95.27638190954774 |
|
- type: manhattan_precision |
|
value: 95.75757575757575 |
|
- type: manhattan_recall |
|
value: 94.8 |
|
- type: max_accuracy |
|
value: 99.90693069306931 |
|
- type: max_ap |
|
value: 97.86562522779887 |
|
- type: max_f1 |
|
value: 95.27638190954774 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 78.89230351770412 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 47.52328347080355 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 57.74702024461137 |
|
- type: mrr |
|
value: 58.88074548001018 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.047929797503592 |
|
- type: cos_sim_spearman |
|
value: 29.465371781983567 |
|
- type: dot_pearson |
|
value: 30.047927690552335 |
|
- type: dot_spearman |
|
value: 29.465371781983567 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: 76631901a18387f85eaa53e5450019b87ad58ef9 |
|
metrics: |
|
- type: map |
|
value: 66.54177017978034 |
|
- type: mrr |
|
value: 76.76094292377299 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.608 |
|
- type: map_at_10 |
|
value: 81.266 |
|
- type: map_at_100 |
|
value: 84.714 |
|
- type: map_at_1000 |
|
value: 84.758 |
|
- type: map_at_3 |
|
value: 56.967 |
|
- type: map_at_5 |
|
value: 70.14 |
|
- type: mrr_at_1 |
|
value: 91.881 |
|
- type: mrr_at_10 |
|
value: 94.11699999999999 |
|
- type: mrr_at_100 |
|
value: 94.178 |
|
- type: mrr_at_1000 |
|
value: 94.181 |
|
- type: mrr_at_3 |
|
value: 93.772 |
|
- type: mrr_at_5 |
|
value: 93.997 |
|
- type: ndcg_at_1 |
|
value: 91.881 |
|
- type: ndcg_at_10 |
|
value: 87.954 |
|
- type: ndcg_at_100 |
|
value: 90.904 |
|
- type: ndcg_at_1000 |
|
value: 91.326 |
|
- type: ndcg_at_3 |
|
value: 88.838 |
|
- type: ndcg_at_5 |
|
value: 87.764 |
|
- type: precision_at_1 |
|
value: 91.881 |
|
- type: precision_at_10 |
|
value: 43.628 |
|
- type: precision_at_100 |
|
value: 5.082 |
|
- type: precision_at_1000 |
|
value: 0.518 |
|
- type: precision_at_3 |
|
value: 77.62400000000001 |
|
- type: precision_at_5 |
|
value: 65.269 |
|
- type: recall_at_1 |
|
value: 28.608 |
|
- type: recall_at_10 |
|
value: 87.06 |
|
- type: recall_at_100 |
|
value: 96.815 |
|
- type: recall_at_1000 |
|
value: 98.969 |
|
- type: recall_at_3 |
|
value: 58.506 |
|
- type: recall_at_5 |
|
value: 73.21600000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 |
|
metrics: |
|
- type: accuracy |
|
value: 56.691999999999986 |
|
- type: f1 |
|
value: 54.692084702788065 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.181 |
|
- type: map_at_10 |
|
value: 1.2 |
|
- type: map_at_100 |
|
value: 6.078 |
|
- type: map_at_1000 |
|
value: 14.940000000000001 |
|
- type: map_at_3 |
|
value: 0.45599999999999996 |
|
- type: map_at_5 |
|
value: 0.692 |
|
- type: mrr_at_1 |
|
value: 66.0 |
|
- type: mrr_at_10 |
|
value: 75.819 |
|
- type: mrr_at_100 |
|
value: 76.168 |
|
- type: mrr_at_1000 |
|
value: 76.168 |
|
- type: mrr_at_3 |
|
value: 72.667 |
|
- type: mrr_at_5 |
|
value: 74.86699999999999 |
|
- type: ndcg_at_1 |
|
value: 59.0 |
|
- type: ndcg_at_10 |
|
value: 52.60399999999999 |
|
- type: ndcg_at_100 |
|
value: 38.049 |
|
- type: ndcg_at_1000 |
|
value: 38.576 |
|
- type: ndcg_at_3 |
|
value: 57.235 |
|
- type: ndcg_at_5 |
|
value: 56.147000000000006 |
|
- type: precision_at_1 |
|
value: 66.0 |
|
- type: precision_at_10 |
|
value: 55.2 |
|
- type: precision_at_100 |
|
value: 38.78 |
|
- type: precision_at_1000 |
|
value: 16.986 |
|
- type: precision_at_3 |
|
value: 62.666999999999994 |
|
- type: precision_at_5 |
|
value: 60.8 |
|
- type: recall_at_1 |
|
value: 0.181 |
|
- type: recall_at_10 |
|
value: 1.471 |
|
- type: recall_at_100 |
|
value: 9.748999999999999 |
|
- type: recall_at_1000 |
|
value: 37.667 |
|
- type: recall_at_3 |
|
value: 0.49300000000000005 |
|
- type: recall_at_5 |
|
value: 0.7979999999999999 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: 5798586b105c0434e4f0fe5e767abe619442cf93 |
|
metrics: |
|
- type: v_measure |
|
value: 78.68783858143624 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d |
|
metrics: |
|
- type: v_measure |
|
value: 77.04148998956299 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.936 |
|
- type: map_at_10 |
|
value: 8.942 |
|
- type: map_at_100 |
|
value: 14.475999999999999 |
|
- type: map_at_1000 |
|
value: 16.156000000000002 |
|
- type: map_at_3 |
|
value: 4.865 |
|
- type: map_at_5 |
|
value: 6.367000000000001 |
|
- type: mrr_at_1 |
|
value: 26.531 |
|
- type: mrr_at_10 |
|
value: 42.846000000000004 |
|
- type: mrr_at_100 |
|
value: 43.441 |
|
- type: mrr_at_1000 |
|
value: 43.441 |
|
- type: mrr_at_3 |
|
value: 36.735 |
|
- type: mrr_at_5 |
|
value: 40.510000000000005 |
|
- type: ndcg_at_1 |
|
value: 24.490000000000002 |
|
- type: ndcg_at_10 |
|
value: 23.262 |
|
- type: ndcg_at_100 |
|
value: 34.959 |
|
- type: ndcg_at_1000 |
|
value: 47.258 |
|
- type: ndcg_at_3 |
|
value: 25.27 |
|
- type: ndcg_at_5 |
|
value: 24.246000000000002 |
|
- type: precision_at_1 |
|
value: 26.531 |
|
- type: precision_at_10 |
|
value: 20.408 |
|
- type: precision_at_100 |
|
value: 7.306 |
|
- type: precision_at_1000 |
|
value: 1.541 |
|
- type: precision_at_3 |
|
value: 26.531 |
|
- type: precision_at_5 |
|
value: 24.082 |
|
- type: recall_at_1 |
|
value: 1.936 |
|
- type: recall_at_10 |
|
value: 15.712000000000002 |
|
- type: recall_at_100 |
|
value: 45.451 |
|
- type: recall_at_1000 |
|
value: 83.269 |
|
- type: recall_at_3 |
|
value: 6.442 |
|
- type: recall_at_5 |
|
value: 9.151 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 86.564 |
|
- type: ap |
|
value: 34.58766846081731 |
|
- type: f1 |
|
value: 72.32759831978161 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 77.80418788907753 |
|
- type: f1 |
|
value: 78.1047638421972 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 59.20888659980063 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 85.45627943017226 |
|
- type: cos_sim_ap |
|
value: 72.25550061847534 |
|
- type: cos_sim_f1 |
|
value: 66.0611487783037 |
|
- type: cos_sim_precision |
|
value: 64.11720884032779 |
|
- type: cos_sim_recall |
|
value: 68.12664907651715 |
|
- type: dot_accuracy |
|
value: 85.45627943017226 |
|
- type: dot_ap |
|
value: 72.25574305366213 |
|
- type: dot_f1 |
|
value: 66.0611487783037 |
|
- type: dot_precision |
|
value: 64.11720884032779 |
|
- type: dot_recall |
|
value: 68.12664907651715 |
|
- type: euclidean_accuracy |
|
value: 85.45627943017226 |
|
- type: euclidean_ap |
|
value: 72.2557084446673 |
|
- type: euclidean_f1 |
|
value: 66.0611487783037 |
|
- type: euclidean_precision |
|
value: 64.11720884032779 |
|
- type: euclidean_recall |
|
value: 68.12664907651715 |
|
- type: manhattan_accuracy |
|
value: 85.32514752339513 |
|
- type: manhattan_ap |
|
value: 71.52919143472248 |
|
- type: manhattan_f1 |
|
value: 65.60288251190322 |
|
- type: manhattan_precision |
|
value: 64.02913840743531 |
|
- type: manhattan_recall |
|
value: 67.25593667546174 |
|
- type: max_accuracy |
|
value: 85.45627943017226 |
|
- type: max_ap |
|
value: 72.25574305366213 |
|
- type: max_f1 |
|
value: 66.0611487783037 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.34167733923235 |
|
- type: cos_sim_ap |
|
value: 84.58587730660244 |
|
- type: cos_sim_f1 |
|
value: 77.14170010676287 |
|
- type: cos_sim_precision |
|
value: 73.91181657848324 |
|
- type: cos_sim_recall |
|
value: 80.66676932553126 |
|
- type: dot_accuracy |
|
value: 88.34167733923235 |
|
- type: dot_ap |
|
value: 84.58585083616217 |
|
- type: dot_f1 |
|
value: 77.14170010676287 |
|
- type: dot_precision |
|
value: 73.91181657848324 |
|
- type: dot_recall |
|
value: 80.66676932553126 |
|
- type: euclidean_accuracy |
|
value: 88.34167733923235 |
|
- type: euclidean_ap |
|
value: 84.5858781355044 |
|
- type: euclidean_f1 |
|
value: 77.14170010676287 |
|
- type: euclidean_precision |
|
value: 73.91181657848324 |
|
- type: euclidean_recall |
|
value: 80.66676932553126 |
|
- type: manhattan_accuracy |
|
value: 88.28152287809989 |
|
- type: manhattan_ap |
|
value: 84.53184837110165 |
|
- type: manhattan_f1 |
|
value: 77.13582823915313 |
|
- type: manhattan_precision |
|
value: 74.76156069364161 |
|
- type: manhattan_recall |
|
value: 79.66584539574993 |
|
- type: max_accuracy |
|
value: 88.34167733923235 |
|
- type: max_ap |
|
value: 84.5858781355044 |
|
- type: max_f1 |
|
value: 77.14170010676287 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
metrics: |
|
- type: map_at_1 |
|
value: 66.10000000000001 |
|
- type: map_at_10 |
|
value: 75.238 |
|
- type: map_at_100 |
|
value: 75.559 |
|
- type: map_at_1000 |
|
value: 75.565 |
|
- type: map_at_3 |
|
value: 73.68299999999999 |
|
- type: map_at_5 |
|
value: 74.63300000000001 |
|
- type: mrr_at_1 |
|
value: 66.10000000000001 |
|
- type: mrr_at_10 |
|
value: 75.238 |
|
- type: mrr_at_100 |
|
value: 75.559 |
|
- type: mrr_at_1000 |
|
value: 75.565 |
|
- type: mrr_at_3 |
|
value: 73.68299999999999 |
|
- type: mrr_at_5 |
|
value: 74.63300000000001 |
|
- type: ndcg_at_1 |
|
value: 66.10000000000001 |
|
- type: ndcg_at_10 |
|
value: 79.25999999999999 |
|
- type: ndcg_at_100 |
|
value: 80.719 |
|
- type: ndcg_at_1000 |
|
value: 80.862 |
|
- type: ndcg_at_3 |
|
value: 76.08200000000001 |
|
- type: ndcg_at_5 |
|
value: 77.782 |
|
- type: precision_at_1 |
|
value: 66.10000000000001 |
|
- type: precision_at_10 |
|
value: 9.17 |
|
- type: precision_at_100 |
|
value: 0.983 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 27.667 |
|
- type: precision_at_5 |
|
value: 17.419999999999998 |
|
- type: recall_at_1 |
|
value: 66.10000000000001 |
|
- type: recall_at_10 |
|
value: 91.7 |
|
- type: recall_at_100 |
|
value: 98.3 |
|
- type: recall_at_1000 |
|
value: 99.4 |
|
- type: recall_at_3 |
|
value: 83.0 |
|
- type: recall_at_5 |
|
value: 87.1 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: 339287def212450dcaa9df8c22bf93e9980c7023 |
|
metrics: |
|
- type: accuracy |
|
value: 91.13 |
|
- type: ap |
|
value: 79.55231335947015 |
|
- type: f1 |
|
value: 89.63091922203914 |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/raw/main/images/gme_logo.png" alt="GME Logo" style="width: 100%; max-width: 450px;"> |
|
</p> |
|
|
|
<p align="center"><b>GME: General Multimodal Embedding</b></p> |
|
|
|
## gme-Qwen2-VL-7B |
|
|
|
We are excited to present `GME-Qwen2VL` series of unified **multimodal embedding models**, |
|
which are based on the advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs). |
|
|
|
The `GME` models support three types of input: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance. |
|
|
|
**Key Enhancements of GME Models**: |
|
|
|
- **Unified Multimodal Representation**: GME models can process both single-modal and combined-modal inputs, resulting in a unified vector representation. This enables versatile retrieval scenarios (Any2Any Search), supporting tasks such as text retrieval, image retrieval from text, and image-to-image searches. |
|
- **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and demonstrate strong evaluation scores in the Multimodal Textual Evaluation Benchmark (**MTEB**). |
|
- **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input. |
|
- **Strong Visual Retrieval Performance**: Enhanced by the Qwen2-VL model series, our models excel in visual document retrieval tasks that require a nuanced understanding of document screenshots. |
|
This capability is particularly beneficial for complex document understanding scenarios, |
|
such as multimodal retrieval-augmented generation (RAG) applications focused on academic papers. |
|
|
|
**Developed by**: Tongyi Lab, Alibaba Group |
|
|
|
**Paper**: [GME: Improving Universal Multimodal Retrieval by Multimodal LLMs](http://arxiv.org/abs/2412.16855) |
|
|
|
|
|
## Model List |
|
| Models | Model Size | Max Seq. Length | Dimension | MTEB-en| MTEB-zh | UMRB | |
|
|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | :-----: | |
|
|[`gme-Qwen2-VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | 65.27 | 68.41 | 64.45 | |
|
|[`gme-Qwen2-VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | 67.48 | 71.36 | 67.44 | |
|
|
|
## Usage |
|
**Use with custom code** |
|
|
|
```python |
|
# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py |
|
from gme_inference import GmeQwen2VL |
|
|
|
model = GmeQwen2VL('Alibaba-NLP/gme-Qwen2-VL-7B-Instruct') |
|
|
|
texts = [ |
|
"What kind of car is this?", |
|
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023." |
|
] |
|
images = [ |
|
'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg', |
|
'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', |
|
] |
|
|
|
# Single-modal embedding |
|
e_text = gme.get_text_embeddings(texts=texts) |
|
e_image = gme.get_image_embeddings(images=images) |
|
print((e_text * e_image).sum(-1)) |
|
## tensor([0.1702, 0.5278], dtype=torch.float16) |
|
|
|
# How to set embedding instruction |
|
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.') |
|
# If is_query=False, we always use the default instruction. |
|
e_corpus = gme.get_image_embeddings(images=images, is_query=False) |
|
print((e_query * e_corpus).sum(-1)) |
|
## tensor([0.2000, 0.5752], dtype=torch.float16) |
|
|
|
# Fused-modal embedding |
|
e_fused = gme.get_fused_embeddings(texts=texts, images=images) |
|
print((e_fused[0] * e_fused[1]).sum()) |
|
## tensor(0.6826, dtype=torch.float16) |
|
|
|
``` |
|
|
|
<!-- <details> |
|
<summary>With transformers</summary> |
|
|
|
```python |
|
# Requires transformers>=4.46.2 |
|
|
|
TODO |
|
|
|
# [[0.3016996383666992, 0.7503870129585266, 0.3203084468841553]] |
|
``` |
|
|
|
</details> |
|
--> |
|
|
|
## Evaluation |
|
|
|
We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others. |
|
|
|
| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. | |
|
|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:| |
|
| | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) | |
|
| VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 37.32 | |
|
| CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.66 | |
|
| One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.01 | |
|
| DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.04 | |
|
| E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.52 | |
|
| **[GME-Qwen2-VL-2B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct)** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | 61.93 | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 | |
|
| **[GME-Qwen2-VL-7B](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct)** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | **65.83** | **80.94** | **66.18** | **42.56** | **73.62** | **67.44** | |
|
|
|
The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model. |
|
|
|
**More detailed experimental results can be found in the [paper](http://arxiv.org/abs/2412.16855)**. |
|
|
|
## Limitations |
|
|
|
- **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency. |
|
Due to the lack of relevant data, our models and evaluations retain one single image. |
|
- **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed. |
|
|
|
We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version. |
|
|
|
|
|
## Redistribution and Use |
|
|
|
We encourage and value diverse applications of GME models and continuous enhancements to the models themselves. |
|
|
|
- If you distribute or make GME models (or any derivative works) available, or if you create a product or service (including another AI model) that incorporates them, you must prominently display `Built with GME` on your website, user interface, blog post, About page, or product documentation. |
|
|
|
- If you utilize GME models or their outputs to develop, train, fine-tune, or improve an AI model that is distributed or made available, you must prefix the name of any such AI model with `GME`. |
|
|
|
## Cloud API Services |
|
|
|
In addition to the open-source [GME](https://huggingface.co/collections/Alibaba-NLP/gme-models-67667e092da3491f630964d6) series models, GME series models are also available as commercial API services on Alibaba Cloud. |
|
|
|
- [MultiModal Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/multimodal-embedding-api-reference?spm=a2c4g.11186623.0.0.321c1d1cqmoJ5C): The `multimodal-embedding-v1` model service is available. |
|
|
|
Note that the models behind the commercial APIs are not entirely identical to the open-source models. |
|
|
|
## Hiring |
|
|
|
We have open positions for Research Interns and Full-Time Researchers to join our team at Tongyi Lab. |
|
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. |
|
Our team is located in the vibrant cities of Beijing and Hangzhou, offering a collaborative and dynamic work environment where you can contribute to cutting-edge advancements in artificial intelligence and machine learning. |
|
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:[email protected]">[email protected]</a>. |
|
|
|
|
|
## Citation |
|
If you find our paper or models helpful, please consider cite: |
|
|
|
``` |
|
@misc{zhang2024gme, |
|
title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs}, |
|
author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min}, |
|
year={2024}, |
|
eprint={2412.16855}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={http://arxiv.org/abs/2412.16855}, |
|
} |
|
``` |
|
|