Add library_name and clarify license
#1
by
nielsr
HF staff
- opened
README.md
CHANGED
@@ -1,16 +1,18 @@
|
|
1 |
---
|
2 |
-
license: other
|
3 |
-
language:
|
4 |
-
- en
|
5 |
base_model:
|
6 |
- THUDM/CogVideoX-5b
|
|
|
|
|
|
|
|
|
7 |
tags:
|
8 |
- video
|
9 |
- video-generation
|
10 |
- cogvideox
|
11 |
- alibaba
|
12 |
-
|
13 |
---
|
|
|
14 |
<div align="center">
|
15 |
|
16 |
<img src="icon.jpg" width="250"/>
|
@@ -56,6 +58,21 @@ Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable
|
|
56 |
- `2024/08/27` We released our v2 paper including appendix.
|
57 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
## 🎞️ Showcases
|
60 |
|
61 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
@@ -66,6 +83,79 @@ https://github.com/user-attachments/assets/4026c23d-229d-45d7-b5be-6f3eb9e4fd50
|
|
66 |
|
67 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
## 🤝 Acknowledgements
|
70 |
|
71 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- THUDM/CogVideoX-5b
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
license: other
|
7 |
+
pipeline_tag: text-to-video
|
8 |
tags:
|
9 |
- video
|
10 |
- video-generation
|
11 |
- cogvideox
|
12 |
- alibaba
|
13 |
+
library_name: pytorch
|
14 |
---
|
15 |
+
|
16 |
<div align="center">
|
17 |
|
18 |
<img src="icon.jpg" width="250"/>
|
|
|
58 |
- `2024/08/27` We released our v2 paper including appendix.
|
59 |
- `2024/07/31` We submitted our paper on arXiv and released our project page.
|
60 |
|
61 |
+
## 📑 Table of Contents
|
62 |
+
|
63 |
+
- [🎞️ Showcases](#%EF%B8%8F-showcases)
|
64 |
+
- [✅ TODO List](#-todo-list)
|
65 |
+
- [🧨 Diffusers verision](#-diffusers-verision)
|
66 |
+
- [🐍 Installation](#-installation)
|
67 |
+
- [📦 Model Weights](#-model-weights)
|
68 |
+
- [🔄 Inference](#-inference)
|
69 |
+
- [🖥️ Gradio Demo](#%EF%B8%8F-gradio-demo)
|
70 |
+
- [🧠 Training](#-training)
|
71 |
+
- [🎯 Troubleshooting](#-troubleshooting)
|
72 |
+
- [🤝 Acknowledgements](#-acknowledgements)
|
73 |
+
- [📄 Our previous work](#-our-previous-work)
|
74 |
+
- [📚 Citation](#-citation)
|
75 |
+
|
76 |
## 🎞️ Showcases
|
77 |
|
78 |
https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
|
|
|
83 |
|
84 |
All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
|
85 |
|
86 |
+
## ✅ TODO List
|
87 |
+
|
88 |
+
- [x] Release our inference code and model weights
|
89 |
+
- [x] Provide a ModelScope Demo
|
90 |
+
- [x] Release our training code
|
91 |
+
- [x] Release diffusers version and optimize the GPU memory usage
|
92 |
+
- [x] Release complete version of Tora
|
93 |
+
|
94 |
+
## 📦 Model Weights
|
95 |
+
|
96 |
+
### Folder Structure
|
97 |
+
|
98 |
+
```
|
99 |
+
Tora
|
100 |
+
└── sat
|
101 |
+
└── ckpts
|
102 |
+
├── t5-v1_1-xxl
|
103 |
+
│ ├── model-00001-of-00002.safetensors
|
104 |
+
│ └── ...
|
105 |
+
├── vae
|
106 |
+
│ └── 3d-vae.pt
|
107 |
+
├── tora
|
108 |
+
│ ├── i2v
|
109 |
+
│ │ └── mp_rank_00_model_states.pt
|
110 |
+
│ └── t2v
|
111 |
+
│ └── mp_rank_00_model_states.pt
|
112 |
+
└── CogVideoX-5b-sat # for training stage 1
|
113 |
+
└── mp_rank_00_model_states.pt
|
114 |
+
```
|
115 |
+
|
116 |
+
### Download Links
|
117 |
+
|
118 |
+
*Note: Downloading the `tora` weights requires following the [CogVideoX License](CogVideoX_LICENSE).* You can choose one of the following options: HuggingFace, ModelScope, or native links.\
|
119 |
+
After downloading the model weights, you can put them in the `Tora/sat/ckpts` folder.
|
120 |
+
|
121 |
+
#### HuggingFace
|
122 |
+
|
123 |
+
```bash
|
124 |
+
# This can be faster
|
125 |
+
pip install "huggingface_hub[hf_transfer]"
|
126 |
+
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Alibaba-Research-Intelligence-Computing/Tora --local-dir ckpts
|
127 |
+
```
|
128 |
+
|
129 |
+
or
|
130 |
+
|
131 |
+
```bash
|
132 |
+
# use git
|
133 |
+
git lfs install
|
134 |
+
git clone https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora
|
135 |
+
```
|
136 |
+
|
137 |
+
#### ModelScope
|
138 |
+
|
139 |
+
- SDK
|
140 |
+
|
141 |
+
```bash
|
142 |
+
from modelscope import snapshot_download
|
143 |
+
model_dir = snapshot_download('xiaoche/Tora')
|
144 |
+
```
|
145 |
+
|
146 |
+
- Git
|
147 |
+
|
148 |
+
```bash
|
149 |
+
git clone https://www.modelscope.cn/xiaoche/Tora.git
|
150 |
+
```
|
151 |
+
|
152 |
+
#### Native
|
153 |
+
|
154 |
+
- Download the VAE and T5 model following [CogVideo](https://github.com/THUDM/CogVideo/blob/main/sat/README.md#2-download-model-weights):\
|
155 |
+
- VAE: https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
|
156 |
+
- T5: [text_encoder](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/text_encoder), [tokenizer](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/tokenizer)
|
157 |
+
- Tora t2v model weights: [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/mp_rank_00_model_states.pt). Downloading this weight requires following the [CogVideoX License](CogVideoX_LICENSE).
|
158 |
+
|
159 |
## 🤝 Acknowledgements
|
160 |
|
161 |
We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
|