Add library_name and clarify license

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +94 -4
README.md CHANGED
@@ -1,16 +1,18 @@
1
  ---
2
- license: other
3
- language:
4
- - en
5
  base_model:
6
  - THUDM/CogVideoX-5b
 
 
 
 
7
  tags:
8
  - video
9
  - video-generation
10
  - cogvideox
11
  - alibaba
12
- pipeline_tag: text-to-video
13
  ---
 
14
  <div align="center">
15
 
16
  <img src="icon.jpg" width="250"/>
@@ -56,6 +58,21 @@ Recent advancements in Diffusion Transformer (DiT) have demonstrated remarkable
56
  - `2024/08/27` We released our v2 paper including appendix.
57
  - `2024/07/31` We submitted our paper on arXiv and released our project page.
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  ## 🎞️ Showcases
60
 
61
  https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
@@ -66,6 +83,79 @@ https://github.com/user-attachments/assets/4026c23d-229d-45d7-b5be-6f3eb9e4fd50
66
 
67
  All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  ## 🤝 Acknowledgements
70
 
71
  We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project:
 
1
  ---
 
 
 
2
  base_model:
3
  - THUDM/CogVideoX-5b
4
+ language:
5
+ - en
6
+ license: other
7
+ pipeline_tag: text-to-video
8
  tags:
9
  - video
10
  - video-generation
11
  - cogvideox
12
  - alibaba
13
+ library_name: pytorch
14
  ---
15
+
16
  <div align="center">
17
 
18
  <img src="icon.jpg" width="250"/>
 
58
  - `2024/08/27` We released our v2 paper including appendix.
59
  - `2024/07/31` We submitted our paper on arXiv and released our project page.
60
 
61
+ ## 📑 Table of Contents
62
+
63
+ - [🎞️ Showcases](#%EF%B8%8F-showcases)
64
+ - [✅ TODO List](#-todo-list)
65
+ - [🧨 Diffusers verision](#-diffusers-verision)
66
+ - [🐍 Installation](#-installation)
67
+ - [📦 Model Weights](#-model-weights)
68
+ - [🔄 Inference](#-inference)
69
+ - [🖥️ Gradio Demo](#%EF%B8%8F-gradio-demo)
70
+ - [🧠 Training](#-training)
71
+ - [🎯 Troubleshooting](#-troubleshooting)
72
+ - [🤝 Acknowledgements](#-acknowledgements)
73
+ - [📄 Our previous work](#-our-previous-work)
74
+ - [📚 Citation](#-citation)
75
+
76
  ## 🎞️ Showcases
77
 
78
  https://github.com/user-attachments/assets/949d5e99-18c9-49d6-b669-9003ccd44bf1
 
83
 
84
  All videos are available in this [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/showcases.zip)
85
 
86
+ ## ✅ TODO List
87
+
88
+ - [x] Release our inference code and model weights
89
+ - [x] Provide a ModelScope Demo
90
+ - [x] Release our training code
91
+ - [x] Release diffusers version and optimize the GPU memory usage
92
+ - [x] Release complete version of Tora
93
+
94
+ ## 📦 Model Weights
95
+
96
+ ### Folder Structure
97
+
98
+ ```
99
+ Tora
100
+ └── sat
101
+ └── ckpts
102
+ ├── t5-v1_1-xxl
103
+ │ ├── model-00001-of-00002.safetensors
104
+ │ └── ...
105
+ ├── vae
106
+ │ └── 3d-vae.pt
107
+ ├── tora
108
+ │ ├── i2v
109
+ │ │ └── mp_rank_00_model_states.pt
110
+ │ └── t2v
111
+ │ └── mp_rank_00_model_states.pt
112
+ └── CogVideoX-5b-sat # for training stage 1
113
+ └── mp_rank_00_model_states.pt
114
+ ```
115
+
116
+ ### Download Links
117
+
118
+ *Note: Downloading the `tora` weights requires following the [CogVideoX License](CogVideoX_LICENSE).* You can choose one of the following options: HuggingFace, ModelScope, or native links.\
119
+ After downloading the model weights, you can put them in the `Tora/sat/ckpts` folder.
120
+
121
+ #### HuggingFace
122
+
123
+ ```bash
124
+ # This can be faster
125
+ pip install "huggingface_hub[hf_transfer]"
126
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download Alibaba-Research-Intelligence-Computing/Tora --local-dir ckpts
127
+ ```
128
+
129
+ or
130
+
131
+ ```bash
132
+ # use git
133
+ git lfs install
134
+ git clone https://huggingface.co/Alibaba-Research-Intelligence-Computing/Tora
135
+ ```
136
+
137
+ #### ModelScope
138
+
139
+ - SDK
140
+
141
+ ```bash
142
+ from modelscope import snapshot_download
143
+ model_dir = snapshot_download('xiaoche/Tora')
144
+ ```
145
+
146
+ - Git
147
+
148
+ ```bash
149
+ git clone https://www.modelscope.cn/xiaoche/Tora.git
150
+ ```
151
+
152
+ #### Native
153
+
154
+ - Download the VAE and T5 model following [CogVideo](https://github.com/THUDM/CogVideo/blob/main/sat/README.md#2-download-model-weights):\
155
+ - VAE: https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
156
+ - T5: [text_encoder](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/text_encoder), [tokenizer](https://huggingface.co/THUDM/CogVideoX-2b/tree/main/tokenizer)
157
+ - Tora t2v model weights: [Link](https://cloudbook-public-daily.oss-cn-hangzhou.aliyuncs.com/Tora_t2v/mp_rank_00_model_states.pt). Downloading this weight requires following the [CogVideoX License](CogVideoX_LICENSE).
158
+
159
  ## 🤝 Acknowledgements
160
 
161
  We would like to express our gratitude to the following open-source projects that have been instrumental in the development of our project: