Alpaca69B's picture
Update README.md
2d6c752 verified
metadata
datasets:
  - Alpaca69B/semeval2016-full-absa-reviews-english-translated-resampled
language:
  - en
pipeline_tag: text-generation
tags:
  - absa
  - qlora

llama-2-7b-absa-semeval-2016

Model Details

  • Model Name: Alpaca69B/llama-2-7b-absa-semeval-2016
  • Base Model: NousResearch/Llama-2-7b-chat-hf
  • Fine-Tuned On: Alpaca69B/semeval2016-full-absa-reviews-english-translated-resampled
  • Fine-Tuning Techniques: LoRA attention, 4-bit precision base model loading, gradient checkpointing, etc.
  • Training Resources: Low resource usage

Model Description

This model is an aspect based sentiment analysis model fine-tuned from the Llama-2-7b-chat model on an adjusted semeval-2016 dataset.

Fine-Tuning Techniques

LoRA Attention

  • LoRA attention dimension: 64
  • Alpha parameter for LoRA scaling: 16
  • Dropout probability for LoRA layers: 0.1

bitsandbytes (4-bit precision)

  • Activated 4-bit precision base model loading
  • Compute dtype for 4-bit base models: "float16"
  • Quantization type: "nf4"
  • Nested quantization for 4-bit base models: Disabled

TrainingArguments

  • Output directory: "./results"
  • Number of training epochs: 2
  • Enabled fp16/bf16 training: False
  • Batch size per GPU for training: 4
  • Batch size per GPU for evaluation: 4
  • Gradient accumulation steps: 1
  • Enabled gradient checkpointing: True
  • Maximum gradient norm (gradient clipping): 0.3
  • Initial learning rate: 2e-4
  • Weight decay: 0.001
  • Optimizer: paged_adamw_32bit
  • Learning rate scheduler: cosine
  • Maximum training steps: -1 (overrides num_train_epochs)
  • Ratio of steps for linear warmup: 0.03
  • Group sequences into batches with the same length: True
  • Save checkpoint every X update steps: 0 (disabled)
  • Log every X update steps: 100

SFT (Sequence-level Fine-Tuning)

  • Maximum sequence length: Not specified
  • Packing multiple short examples in the same input sequence: False
  • Load the entire model on GPU 0

Evaluation

The model's performance and usage can be observed in the provided Google Colab notebook.

Model Usage

To use the model, follow the provided code snippet:

from transformers import AutoTokenizer
import transformers
import torch

model = "Alpaca69B/llama-2-7b-absa-semeval-2016"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

def process_user_prompt(input_sentence):
    sequences = pipeline(
        f'### Human: {input_sentence} ### Assistant: aspect: ',
        do_sample=True,
        top_k=10,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id,
        max_length=200,
    )
    result_dict = process_output(sequences[0]['generated_text'])
    return result_dict

def process_output(output):
    result_dict = {}

   # Extract user_prompt
    user_prompt_start = output.find("### Human:")
    user_prompt_end = output.find("aspect: ") + len("aspect: ")
    result_dict['user_prompt'] = output[user_prompt_start:user_prompt_end].strip()

    # Extract cleared_generated_output
    cleared_output_end = output.find(")")
    result_dict['cleared_generated_output'] = output[:cleared_output_end+1].strip()

    # Extract review
    human_start = output.find("Human:") + len("Human:")
    assistant_start = output.find("### Assistant:")
    result_dict['review'] = output[human_start:assistant_start].strip()

    # Extract aspect and sentiment
    aspect_start = output.find("aspect: ") + len("aspect: ")
    sentiment_start = output.find("sentiment: ")
    aspect_text = output[aspect_start:sentiment_start].strip()
    result_dict['aspect'] = aspect_text

    sentiment_end = output[sentiment_start:].find(")") + sentiment_start
    sentiment_text = output[sentiment_start+len("sentiment:"):sentiment_end].strip()
    result_dict['sentiment'] = sentiment_text

    return result_dict


output = process_user_prompt('the first thing that attracts attention is the warm reception and the smiling receptionists.')
print(output)

Fine-Tuning Details

Details of the fine-tuning process are available in the fine-tuning Colab notebook.

Note: Ensure that you have the necessary dependencies and resources before running the model.