|
--- |
|
language: |
|
- zh |
|
- en |
|
pipeline_tag: text-generation |
|
inference: false |
|
--- |
|
# Baichuan-13B-Instruction |
|
|
|
![](./alpachino.png) |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
## 介绍 |
|
Baichuan-13B-Instruction 为 Baichuan-13B 系列模型进行指令微调后的版本,预训练模型可见 [Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base)。 |
|
|
|
|
|
## Demo |
|
|
|
如下是一个使用 gradio 的模型 demo |
|
```python |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction",trust_remote_code=True,use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction",trust_remote_code=True ).half() |
|
model.cuda() |
|
|
|
def generate(histories, max_new_tokens=2048, do_sample = True, top_p = 0.95, temperature = 0.35, repetition_penalty=1.1): |
|
prompt = "" |
|
for history in histories: |
|
history_with_identity = "\nHuman:" + history[0] + "\n\nAssistant:" + history[1] |
|
prompt += history_with_identity |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) |
|
outputs = model.generate( |
|
input_ids = input_ids, |
|
max_new_tokens=max_new_tokens, |
|
early_stopping=True, |
|
do_sample=do_sample, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
rets = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
generate_text = rets[0].replace(prompt, "") |
|
return generate_text |
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot() |
|
msg = gr.Textbox() |
|
clear = gr.Button("clear") |
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, ""]] |
|
|
|
def bot(history): |
|
print(history) |
|
bot_message = generate(history) |
|
history[-1][1] = bot_message |
|
return history |
|
|
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
bot, chatbot, chatbot |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0") |
|
|
|
|
|
|
|
``` |
|
|
|
## 量化部署 |
|
|
|
Baichuan-13B 支持 int8 和 int4 量化,用户只需在推理代码中简单修改两行即可实现。请注意,如果是为了节省显存而进行量化,应加载原始精度模型到 CPU 后再开始量化;避免在 `from_pretrained` 时添加 `device_map='auto'` 或者其它会导致把原始精度模型直接加载到 GPU 的行为的参数。 |
|
|
|
使用 int8 量化 (To use int8 quantization): |
|
```python |
|
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True) |
|
model = model.quantize(8).cuda() |
|
``` |
|
|
|
同样的,如需使用 int4 量化 (Similarly, to use int4 quantization): |
|
```python |
|
model = AutoModelForCausalLM.from_pretrained("AlpachinoNLP/Baichuan-13B-Instruction", torch_dtype=torch.float16, trust_remote_code=True) |
|
model = model.quantize(4).cuda() |
|
``` |
|
|
|
## 模型详情 |
|
|
|
|
|
### 模型结构 |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
整体模型基于Baichuan-13B,为了获得更好的推理性能,Baichuan-13B 使用了 ALiBi 线性偏置技术,相对于 Rotary Embedding 计算量更小,对推理性能有显著提升;与标准的 LLaMA-13B 相比,生成 2000 个 tokens 的平均推理速度 (tokens/s),实测提升 31.6%: |
|
|
|
| Model | tokens/s | |
|
| ------------ | -------- | |
|
| LLaMA-13B | 19.4 | |
|
| Baichuan-13B | 25.4 | |
|
|
|
具体参数和见下表 |
|
| 模型名称 | 隐含层维度 | 层数 | 头数 | 词表大小 | 总参数量 | 训练数据(tokens) | 位置编码 | 最大长度 | |
|
| ------------ | ---------- | ---- | ---- | -------- | -------------- | ------------------ | ----------------------------------------- | -------- | |
|
| Baichuan-7B | 4,096 | 32 | 32 | 64,000 | 7,000,559,616 | 1.2万亿 | [RoPE](https://arxiv.org/abs/2104.09864) | 4,096 | |
|
| Baichuan-13B | 5,120 | 40 | 40 | 64,000 | 13,264,901,120 | 1.4万亿 | [ALiBi](https://arxiv.org/abs/2108.12409) | 4,096 | |
|
|
|
## 训练详情 |
|
|
|
数据集主要由三部分组成: |
|
|
|
* 在 [sharegpt_zh](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/ShareGPT) 数据集中筛选的出 13k 高质量数据。 |
|
* [lima](https://huggingface.co/datasets/GAIR/lima) |
|
* 按照任务类型挑选的 2.3k 高质量中文数据集,每个任务类型的数据量在 100 条左右。 |
|
|
|
硬件:8*A40 |
|
|
|
## 测评结果 |
|
|
|
## [CMMLU](https://github.com/haonan-li/CMMLU) |
|
|
|
| Model 5-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average | |
|
| ---------------------------------------------------------- | :-------: | :--------: | :-------------: | :------: | :------------: | :------: | |
|
| Baichuan-7B | 34.4 | 47.5 | 47.6 | 46.6 | 44.3 | 44.0 | |
|
| Vicuna-13B | 31.8 | 36.2 | 37.6 | 39.5 | 34.3 | 36.3 | |
|
| Chinese-Alpaca-Plus-13B | 29.8 | 33.4 | 33.2 | 37.9 | 32.1 | 33.4 | |
|
| Chinese-LLaMA-Plus-13B | 28.1 | 33.1 | 35.4 | 35.1 | 33.5 | 33.0 | |
|
| Ziya-LLaMA-13B-Pretrain | 29.0 | 30.7 | 33.8 | 34.4 | 31.9 | 32.1 | |
|
| LLaMA-13B | 29.2 | 30.8 | 31.6 | 33.0 | 30.5 | 31.2 | |
|
| moss-moon-003-base (16B) | 27.2 | 30.4 | 28.8 | 32.6 | 28.7 | 29.6 | |
|
| Baichuan-13B-Base | 41.7 | 61.1 | 59.8 | 59.0 | 56.4 | 55.3 | |
|
| Baichuan-13B-Chat | 42.8 | **62.6** | **59.7** | **59.0** | **56.1** | **55.8** | |
|
| **Baichuan-13B-Instruction** | **44.50** | 61.16 | 59.07 | 58.34 | 55.55 | 55.61 | |
|
|
|
| Model zero-shot | STEM | Humanities | Social Sciences | Others | China Specific | Average | |
|
| ------------------------------------------------------------ | :-------: | :--------: | :-------------: | :-------: | :------------: | :-------: | |
|
| [ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b) | 41.28 | 52.85 | 53.37 | 52.24 | 50.58 | 49.95 | |
|
| [Baichuan-7B](https://github.com/baichuan-inc/baichuan-7B) | 32.79 | 44.43 | 46.78 | 44.79 | 43.11 | 42.33 | |
|
| [ChatGLM-6B](https://github.com/THUDM/GLM-130B) | 32.22 | 42.91 | 44.81 | 42.60 | 41.93 | 40.79 | |
|
| [BatGPT-15B](https://arxiv.org/abs/2307.00360) | 33.72 | 36.53 | 38.07 | 46.94 | 38.32 | 38.51 | |
|
| [Chinese-LLaMA-13B](https://github.com/ymcui/Chinese-LLaMA-Alpaca) | 26.76 | 26.57 | 27.42 | 28.33 | 26.73 | 27.34 | |
|
| [MOSS-SFT-16B](https://github.com/OpenLMLab/MOSS) | 25.68 | 26.35 | 27.21 | 27.92 | 26.70 | 26.88 | |
|
| [Chinese-GLM-10B](https://github.com/THUDM/GLM) | 25.57 | 25.01 | 26.33 | 25.94 | 25.81 | 25.80 | |
|
| [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) | 42.04 | 60.49 | 59.55 | 56.60 | 55.72 | 54.63 | |
|
| [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) | 37.32 | 56.24 | 54.79 | 54.07 | 52.23 | 50.48 | |
|
| **Baichuan-13B-Instruction** | **42.56** | **62.09** | **60.41** | **58.97** | **56.95** | **55.88** | |
|
|
|
> 说明:CMMLU 是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。我们直接使用其官方的[评测脚本](https://github.com/haonan-li/CMMLU)对模型进行评测。Model zero-shot 表格中 [Baichuan-13B-Chat](https://github.com/baichuan-inc/Baichuan-13B) 的得分来自我们直接运行 CMMLU 官方的评测脚本得到,其他模型的的得分来自于 [CMMLU](https://github.com/haonan-li/CMMLU/tree/master) 官方的评测结果,Model 5-shot 中其他模型的得分来自于[Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) 官方的评测结果。 |
|
|
|
|