See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 148a3da1572f97b6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/148a3da1572f97b6_train_data.json
type:
field_instruction: instruction
field_output: response_8b_instruct
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/225892d5-fc4b-4e5d-982b-9b9758f1d465
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 6883
micro_batch_size: 4
mlflow_experiment_name: /tmp/148a3da1572f97b6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0b732679-6afe-438e-9166-ce18203e8392
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0b732679-6afe-438e-9166-ce18203e8392
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
225892d5-fc4b-4e5d-982b-9b9758f1d465
This model is a fine-tuned version of unsloth/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8975
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 6883
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1411 | 0.0004 | 1 | 1.1328 |
0.997 | 0.0414 | 100 | 0.9928 |
0.9918 | 0.0828 | 200 | 0.9765 |
0.9758 | 0.1242 | 300 | 0.9664 |
1.0321 | 0.1657 | 400 | 0.9589 |
0.9145 | 0.2071 | 500 | 0.9534 |
0.9221 | 0.2485 | 600 | 0.9484 |
0.9491 | 0.2899 | 700 | 0.9426 |
0.9197 | 0.3313 | 800 | 0.9395 |
0.8908 | 0.3727 | 900 | 0.9348 |
0.9304 | 0.4141 | 1000 | 0.9311 |
0.9634 | 0.4556 | 1100 | 0.9282 |
0.8384 | 0.4970 | 1200 | 0.9245 |
0.9663 | 0.5384 | 1300 | 0.9215 |
0.8786 | 0.5798 | 1400 | 0.9180 |
1.0157 | 0.6212 | 1500 | 0.9154 |
0.9045 | 0.6626 | 1600 | 0.9139 |
0.9063 | 0.7040 | 1700 | 0.9108 |
0.8433 | 0.7455 | 1800 | 0.9071 |
0.916 | 0.7869 | 1900 | 0.9045 |
0.911 | 0.8283 | 2000 | 0.9021 |
0.892 | 0.8697 | 2100 | 0.8995 |
0.8842 | 0.9111 | 2200 | 0.8974 |
0.9172 | 0.9525 | 2300 | 0.8951 |
0.9257 | 0.9939 | 2400 | 0.8918 |
0.7979 | 1.0354 | 2500 | 0.8967 |
0.7197 | 1.0768 | 2600 | 0.8975 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/225892d5-fc4b-4e5d-982b-9b9758f1d465
Base model
unsloth/Qwen2-0.5B-Instruct