Alvin-Nahabwe's picture
End of training
0b4334c
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: XLS-R_Synthesis_ALL_v2
    results: []

XLS-R_Synthesis_ALL_v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1577
  • Wer: 0.1671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 18
  • eval_batch_size: 9
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 72
  • total_eval_batch_size: 18
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: polynomial
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.5648 1.0 2611 1.3992 0.9921
0.7741 2.0 5223 0.3761 0.4506
0.431 3.0 7834 0.2574 0.3203
0.3323 4.0 10446 0.2205 0.2609
0.2818 5.0 13057 0.2050 0.2260
0.2514 6.0 15669 0.1896 0.2105
0.2318 7.0 18280 0.1766 0.2024
0.2189 8.0 20892 0.1736 0.1968
0.2098 9.0 23503 0.1755 0.1917
0.2024 10.0 26115 0.1707 0.1931
0.1966 11.0 28726 0.1636 0.1871
0.1893 12.0 31338 0.1719 0.1839
0.1808 13.0 33949 0.1684 0.1815
0.1756 14.0 36561 0.1631 0.1768
0.1702 15.0 39172 0.1670 0.1757
0.1651 16.0 41784 0.1627 0.1718
0.1596 17.0 44395 0.1572 0.1683
0.1553 18.0 47007 0.1614 0.1675
0.1528 19.0 49618 0.1701 0.1723
0.1502 20.0 52230 0.1598 0.1654
0.1839 21.0 54841 0.2059 0.2144
0.2445 22.0 57453 0.2215 0.2463
0.2002 23.0 60064 0.1703 0.1788
0.1534 24.0 62676 0.1634 0.1698
0.1449 25.0 65287 0.1577 0.1671

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0