AmadFR's picture
End of training
d44ad36 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Emotion_Classification
    results: []

Emotion_Classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3727
  • Accuracy: 0.55

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.083 1.0 10 2.0798 0.1625
2.0591 2.0 20 2.0464 0.2812
2.0043 3.0 30 1.9889 0.325
1.9174 4.0 40 1.9087 0.3375
1.819 5.0 50 1.8037 0.3875
1.7161 6.0 60 1.6875 0.4125
1.6253 7.0 70 1.6207 0.4437
1.549 8.0 80 1.5978 0.4437
1.4946 9.0 90 1.5430 0.4688
1.4426 10.0 100 1.4995 0.5125
1.4061 11.0 110 1.4919 0.4938
1.3648 12.0 120 1.4628 0.525
1.3306 13.0 130 1.4207 0.5437
1.3071 14.0 140 1.4340 0.5188
1.2791 15.0 150 1.4126 0.5188
1.2589 16.0 160 1.4119 0.5375
1.2199 17.0 170 1.4168 0.4938
1.2189 18.0 180 1.3957 0.525
1.2096 19.0 190 1.4015 0.5625
1.2114 20.0 200 1.3932 0.5188

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3