bart-large-finetuned-resume-summarizer-bathcsize-8-epoch-9

This model is a fine-tuned version of Ameer05/tokenizer-repo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5988
  • Rouge1: 54.4865
  • Rouge2: 45.2321
  • Rougel: 50.0237
  • Rougelsum: 53.2463

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 9
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.3463 1.0 44 2.0015 50.2382 40.3332 45.6831 49.1811
0.2771 2.0 88 2.0433 58.3265 50.1555 54.3681 56.9592
0.172 3.0 132 2.2077 55.9801 47.6352 51.9102 54.3347
0.1251 4.0 176 2.1834 53.3525 44.2643 49.9253 52.0145
0.0901 5.0 220 2.2857 56.7259 46.7879 52.3245 55.16
0.0506 6.0 264 2.5131 53.8128 44.9024 50.4617 52.8586
0.0434 7.0 308 2.5274 52.076 41.8135 47.3822 50.2634
0.0269 8.0 352 2.6374 54.7639 45.51 50.2608 53.6006
0.0147 9.0 396 2.5988 54.4865 45.2321 50.0237 53.2463

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.9.1
  • Datasets 2.0.0
  • Tokenizers 0.10.3
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.