|
--- |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test |
|
|
|
This model is a fine-tuned version of [Ameer05/tokenizer-repo](https://huggingface.co/Ameer05/tokenizer-repo) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6109 |
|
- Rouge1: 54.9442 |
|
- Rouge2: 45.3299 |
|
- Rougel: 50.5219 |
|
- Rougelsum: 53.6475 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| No log | 0.91 | 5 | 2.3705 | 53.62 | 44.3835 | 49.6135 | 52.693 | |
|
| No log | 1.91 | 10 | 1.9035 | 47.478 | 37.0934 | 39.7935 | 45.1881 | |
|
| No log | 2.91 | 15 | 1.7990 | 54.2488 | 45.0782 | 49.8421 | 52.7564 | |
|
| No log | 3.91 | 20 | 1.7125 | 55.7903 | 46.7554 | 52.2733 | 54.9389 | |
|
| 2.4456 | 4.91 | 25 | 1.6421 | 52.2279 | 43.4391 | 49.6955 | 51.2915 | |
|
| 2.4456 | 5.91 | 30 | 1.6102 | 55.8598 | 47.3293 | 53.1337 | 54.8596 | |
|
| 2.4456 | 6.91 | 35 | 1.6164 | 53.7902 | 44.6622 | 49.5045 | 52.2304 | |
|
| 2.4456 | 7.91 | 40 | 1.6015 | 51.5597 | 42.0333 | 47.9639 | 50.1154 | |
|
| 1.239 | 8.91 | 45 | 1.6067 | 53.0301 | 43.7214 | 49.0227 | 51.8109 | |
|
| 1.239 | 9.91 | 50 | 1.6109 | 54.9442 | 45.3299 | 50.5219 | 53.6475 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.15.0 |
|
- Pytorch 1.9.1 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.10.3 |
|
|