File size: 7,800 Bytes
2771929
e673619
ecc320f
bef527d
548fef3
bef527d
548fef3
 
2771929
49d3c66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2771929
49d3c66
 
 
0eb9272
7e76b37
 
548fef3
8bb011f
 
5cfddda
 
1ef383f
548fef3
 
 
49d3c66
 
 
b73ac0e
 
 
 
66fb9b9
b73ac0e
 
 
 
49d3c66
b704445
2b975f7
 
49d3c66
b73ac0e
49d3c66
05ba495
 
 
 
 
 
 
 
 
49d3c66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac2a2c5
49d3c66
 
 
 
 
075cf92
49d3c66
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
widget:
- text: "MEPLDDLDLLLLEEDSGAEAVPRMEILQKKADAFFAETVLSRGVDNRYLVLAVETKLNERGAEEKHLLITVSQEGEQEVLCILRNGWSSVPVEPGDIIHIEGDCTSEPWIVDDDFGYFILSPDMLISGTSVASSIRCLRRAVLSETFRVSDTATRQMLIGTILHEVFQKAISESFAPEKLQELALQTLREVRHLKEMYRLNLSQDEVRCEVEEYLPSFSKWADEFMHKGTKAEFPQMHLSLPSDSSDRSSPCNIEVVKSLDIEESIWSPRFGLKGKIDVTVGVKIHRDCKTKYKIMPLELKTGKESNSIEHRGQVILYTLLSQERREDPEAGWLLYLKTGQMYPVPANHLDKRELLKLRNQLAFSLLHRVSRAAAGEEARLLALPQIIEEEKTCKYCSQMGNCALYSRAVEQVHDTSIPEGMRSKIQEGTQHLTRAHLKYFSLWCLMLTLESQSKDTKKSHQSIWLTPASKLEESGNCIGSLVRTEPVKRVCDGHYLHNFQRKNGPMPATNLMAGDRIILSGEERKLFALSKGYVKRIDTAAVTCLLDRNLSTLPETTLFRLDREEKHGDINTPLGNLSKLMENTDSSKRLRELIIDFKEPQFIAYLSSVLPHDAKDTVANILKGLNKPQRQAMKKVLLSKDYTLIVGMPGTGKTTTICALVRILSACGFSVLLTSYTHSAVDNILLKLAKFKIGFLRLGQSHKVHPDIQKFTEEEMCRLRSIASLAHLEELYNSHPVVATTCMGISHPMFSRKTFDFCIVDEASQISQPICLGPLFFSRRFVLVGDHKQLPPLVLNREARALGMSESLFKRLERNESAVVQLTIQYRMNRKIMSLSNKLTYEGKLECGSDRVANAVITLPNLKDVRLEFYADYSDNPWLAGVFEPDNPVCFLNTDKVPAPEQIENGGVSNVTEARLIVFLTSTFIKAGCSPSDIGIIAPYRQQLRTITDLLARSSVGMVEVNTVDKYQGRDKSLILVSFVRSNEDGTLGELLKDWRRLNVAITRAKHKLILLGSVSSLKRF"
  example_title: "Protein Sequence 1"
- text: "MNSVTVSHAPYYIVYHDDWEPVMSQLVEFYNEVASWLLRDETSPIPPKFFIQLKQMLRNKRVCVCGILPYPIDGTGVPFESPNFTKKSIKEIASSISRLTGVIDYKGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPAARDRQFEKDRSFEIINELLELDNKVPINWAQGFIY"
  example_title: "Protein Sequence 2"
- text: "MNSVTVSHAPYTIAYHDDWEPVMSQLVEFYNEAASWLLRDETSPIPSKFNIQLKQPLRNKRVCVFGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLMGVIDYEGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPSARDRQFEKDRSFEIINVLLELDNKVPLNWAQGFIY"
  example_title: "Protein Sequence 3"
license: mit
datasets:
- AmelieSchreiber/general_binding_sites
language:
- en
metrics:
- precision
- recall
- f1
library_name: transformers
tags:
- biology
- esm
- esm2
- ESM-2
- protein language model
---

# ESM-2 for General Protein Binding Site Prediction

This model is trained to predict general binding sites of proteins using only the sequence. This is a finetuned version of 
`esm2_t6_8M_UR50D` ([see here](https://huggingface.co/facebook/esm2_t6_8M_UR50D) and [also here](https://huggingface.co/docs/transformers/model_doc/esm)
for more info on the base model), trained on [this dataset](https://huggingface.co/datasets/AmelieSchreiber/general_binding_sites). The data is 
not filtered by family, and thus the model may be overfit to some degree. In the Hugging Face Inference API widget to the right 
there are three protein sequence examples. The first is a DNA binding protein truncated to the first 1022 amino acid residues
([see UniProt entry here](https://www.uniprot.org/uniprotkb/D3ZG52/entry)). 

The second and third were obtained using [EvoProtGrad](https://github.com/Amelie-Schreiber/sampling_protein_language_models/blob/main/EvoProtGrad_copy.ipynb)
a Markov Chain Monte Carlo method of (*in silico*) directed evolution of proteins based on a form of Gibbs sampling. The mutatant-type 
protein sequences in theory should have similar binding sites to the wild-type protein sequence, but perhaps with higher binding affinity. 
Testing this out on the model, we see the two proteins indeed have the same binding sites, which validates to some degree that the model 
has learned to predict binding sites well (and that EvoProtGrad works as intended). 

## Training

This model was trained on approximately 70,000 proteins with binding site and active site annotations in UniProt. 
The training split was a random 85/15 split for this version, and does not consider anything in the way of family or sequence 
similarity. New iterations of the model have been trained on larger datasets (over 200,000 proteins), with the split such that 
there are no overlapping families, however they seem to overfit much earlier and have significantly worse performance in terms 
of the training metrics (precision, recall, and F1). To address this we plan to implement LoRA (and hopefully QLoRA). 

Training Metrics for the Model in the form of the `trainer_state.json` can be 
[found here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2/blob/main/trainer_state.json).

```
epoch 3:
Training Loss Validation Loss Precision	Recall	 F1	      Auc
0.031100	  0.074720	      0.684798	0.966856 0.801743 0.980853
```
The hyperparameters are:

```
wandb: 	lr: 0.0004977045729600779
wandb: 	lr_scheduler_type: cosine
wandb: 	max_grad_norm: 0.5
wandb: 	num_train_epochs: 3
wandb: 	per_device_train_batch_size: 8
wandb: 	weight_decay: 0.025
```

## Using the Model

To use the model, try running:
```python
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer

def predict_binding_sites(model_path, protein_sequences):
    """
    Predict binding sites for a collection of protein sequences.

    Parameters:
    - model_path (str): Path to the saved model.
    - protein_sequences (List[str]): List of protein sequences.

    Returns:
    - List[List[str]]: Predicted labels for each sequence.
    """

    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForTokenClassification.from_pretrained(model_path)

    # Ensure model is in evaluation mode
    model.eval()

    # Tokenize sequences
    inputs = tokenizer(protein_sequences, return_tensors="pt", padding=True, truncation=True)

    # Move to the same device as model and obtain logits
    with torch.no_grad():
        logits = model(**inputs).logits

    # Obtain predicted labels
    predicted_labels = torch.argmax(logits, dim=-1).cpu().numpy()

    # Convert label IDs to human-readable labels
    id2label = model.config.id2label
    human_readable_labels = [[id2label[label_id] for label_id in sequence] for sequence in predicted_labels]

    return human_readable_labels

# Usage:
model_path = "AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2"  # Replace with your model's path
unseen_proteins = [
    "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIDVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKPKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD", 
    "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD", 
    "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEVRLLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRSAFKASEEFCYLLFECQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCRMMGVKD", 
    "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYGIRYAEHPYVHGVVKGVELDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEYRSLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRKTVIDVAKGEVRKGEEFFVVDPVDEKRNVAALLSLDNLARFVHLCREFMEAVSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRRAFKASEEFCYLLFEQQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIIEGEKLFKEPVTAELCRMMGVKD"
]  # Replace with your protein sequences
predictions = predict_binding_sites(model_path, unseen_proteins)
predictions
```