AmelieSchreiber's picture
Update README.md
5c28821
|
raw
history blame
7.32 kB
---
widget:
- text: "MEPLDDLDLLLLEEDSGAEAVPRMEILQKKADAFFAETVLSRGVDNRYLVLAVETKLNERGAEEKHLLITVSQEGEQEVLCILRNGWSSVPVEPGDIIHIEGDCTSEPWIVDDDFGYFILSPDMLISGTSVASSIRCLRRAVLSETFRVSDTATRQMLIGTILHEVFQKAISESFAPEKLQELALQTLREVRHLKEMYRLNLSQDEVRCEVEEYLPSFSKWADEFMHKGTKAEFPQMHLSLPSDSSDRSSPCNIEVVKSLDIEESIWSPRFGLKGKIDVTVGVKIHRDCKTKYKIMPLELKTGKESNSIEHRGQVILYTLLSQERREDPEAGWLLYLKTGQMYPVPANHLDKRELLKLRNQLAFSLLHRVSRAAAGEEARLLALPQIIEEEKTCKYCSQMGNCALYSRAVEQVHDTSIPEGMRSKIQEGTQHLTRAHLKYFSLWCLMLTLESQSKDTKKSHQSIWLTPASKLEESGNCIGSLVRTEPVKRVCDGHYLHNFQRKNGPMPATNLMAGDRIILSGEERKLFALSKGYVKRIDTAAVTCLLDRNLSTLPETTLFRLDREEKHGDINTPLGNLSKLMENTDSSKRLRELIIDFKEPQFIAYLSSVLPHDAKDTVANILKGLNKPQRQAMKKVLLSKDYTLIVGMPGTGKTTTICALVRILSACGFSVLLTSYTHSAVDNILLKLAKFKIGFLRLGQSHKVHPDIQKFTEEEMCRLRSIASLAHLEELYNSHPVVATTCMGISHPMFSRKTFDFCIVDEASQISQPICLGPLFFSRRFVLVGDHKQLPPLVLNREARALGMSESLFKRLERNESAVVQLTIQYRMNRKIMSLSNKLTYEGKLECGSDRVANAVITLPNLKDVRLEFYADYSDNPWLAGVFEPDNPVCFLNTDKVPAPEQIENGGVSNVTEARLIVFLTSTFIKAGCSPSDIGIIAPYRQQLRTITDLLARSSVGMVEVNTVDKYQGRDKSLILVSFVRSNEDGTLGELLKDWRRLNVAITRAKHKLILLGSVSSLKRF"
example_title: "Protein Sequence 1"
- text: "MNSVTVSHAPYYIVYHDDWEPVMSQLVEFYNEVASWLLRDETSPIPPKFFIQLKQMLRNKRVCVCGILPYPIDGTGVPFESPNFTKKSIKEIASSISRLTGVIDYKGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPAARDRQFEKDRSFEIINELLELDNKVPINWAQGFIY"
example_title: "Protein Sequence 2"
- text: "MNSVTVSHAPYTIAYHDDWEPVMSQLVEFYNEAASWLLRDETSPIPSKFNIQLKQPLRNKRVCVFGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLMGVIDYEGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPSARDRQFEKDRSFEIINVLLELDNKVPLNWAQGFIY"
example_title: "Protein Sequence 3"
license: mit
datasets:
- AmelieSchreiber/general_binding_sites
language:
- en
metrics:
- precision
- recall
- f1
library_name: transformers
tags:
- biology
- esm
- esm2
- ESM-2
- protein language model
---
# ESM-2 for General Protein Binding Site Prediction
This model is trained to predict general binding sites of proteins using on the sequence. This is a finetuned version of
`esm2_t6_8M_UR50D`, trained on [this dataset](https://huggingface.co/datasets/AmelieSchreiber/general_binding_sites). The data is
not filtered by family, and thus the model may be overfit to some degree. In the Hugging Face Inference API widget to the right
there are three protein sequence examples. The first is a DNA binding protein ([see UniProt entry here](https://www.uniprot.org/uniprotkb/D3ZG52/entry)).
Note there is nontrivial (GMPGTGK) overlap in the predicted binding sites and the binding sites given in UniProt. Note also that
some of the extraneous predictions are near misses and are very close to the binding sites given in UniProt.
The second and third were obtained using [EvoProtGrad](https://github.com/Amelie-Schreiber/sampling_protein_language_models/blob/main/EvoProtGrad_copy.ipynb)
a Markov Chain Monte Carlo method of (in silico) directed evolution of proteins based on a form of Gibbs sampling. The mutatant-type
protein sequences in theory should have similar binding sites to the wild-type protein sequence, but perhaps with higher binding affinity.
Testing this out on the model, we see the two proteins indeed have the same binding sites, which validates to some degree that the model
has learned to predict binding sites well (and that EvoProtGrad works as intended).
## Training
```
epoch 3:
Training Loss Validation Loss Precision Recall F1 Auc
0.031100 0.074720 0.684798 0.966856 0.801743 0.980853
```
```
wandb: lr: 0.0004977045729600779
wandb: lr_scheduler_type: cosine
wandb: max_grad_norm: 0.5
wandb: num_train_epochs: 3
wandb: per_device_train_batch_size: 8
wandb: weight_decay: 0.025
```
## Using the Model
Try pasting a protein sequence into the cell on the right and clicking on "Compute". For example, try
```
MNSVTVSHAPYTIAYHDDWEPVMSQLVEFYNEAASWLLRDETSPIPSKFNIQLKQPLRNKRVCVFGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLMGVIDYEGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPSARDRQFEKDRSFEIINVLLELDNKVPLNWAQGFIY
```
To use the model, try running:
```python
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
def predict_binding_sites(model_path, protein_sequences):
"""
Predict binding sites for a collection of protein sequences.
Parameters:
- model_path (str): Path to the saved model.
- protein_sequences (List[str]): List of protein sequences.
Returns:
- List[List[str]]: Predicted labels for each sequence.
"""
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForTokenClassification.from_pretrained(model_path)
# Ensure model is in evaluation mode
model.eval()
# Tokenize sequences
inputs = tokenizer(protein_sequences, return_tensors="pt", padding=True, truncation=True)
# Move to the same device as model and obtain logits
with torch.no_grad():
logits = model(**inputs).logits
# Obtain predicted labels
predicted_labels = torch.argmax(logits, dim=-1).cpu().numpy()
# Convert label IDs to human-readable labels
id2label = model.config.id2label
human_readable_labels = [[id2label[label_id] for label_id in sequence] for sequence in predicted_labels]
return human_readable_labels
# Usage:
model_path = "AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2" # Replace with your model's path
unseen_proteins = [
"MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIDVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKPKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD",
"MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD",
"MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEVRLLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRSAFKASEEFCYLLFECQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCRMMGVKD",
"MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYGIRYAEHPYVHGVVKGVELDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEYRSLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRKTVIDVAKGEVRKGEEFFVVDPVDEKRNVAALLSLDNLARFVHLCREFMEAVSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRRAFKASEEFCYLLFEQQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIIEGEKLFKEPVTAELCRMMGVKD"
] # Replace with your unseen protein sequences
predictions = predict_binding_sites(model_path, unseen_proteins)
predictions
```