|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import tempfile |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMInverseScheduler, |
|
DDIMScheduler, |
|
DDPMScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
StableDiffusionPix2PixZeroPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import enable_full_determinism, load_image, load_pt, require_torch_gpu, skip_mps |
|
|
|
from ..pipeline_params import ( |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
assert_mean_pixel_difference, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class StableDiffusionPix2PixZeroPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = StableDiffusionPix2PixZeroPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"image"} |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
cls.source_embeds = load_pt( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/src_emb_0.pt" |
|
) |
|
|
|
cls.target_embeds = load_pt( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/tgt_emb_0.pt" |
|
) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = DDIMScheduler() |
|
inverse_scheduler = DDIMInverseScheduler() |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"safety_checker": None, |
|
"feature_extractor": None, |
|
"inverse_scheduler": inverse_scheduler, |
|
"caption_generator": None, |
|
"caption_processor": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
generator = torch.manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"cross_attention_guidance_amount": 0.15, |
|
"source_embeds": self.source_embeds, |
|
"target_embeds": self.target_embeds, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def get_dummy_inversion_inputs(self, device, seed=0): |
|
dummy_image = floats_tensor((2, 3, 32, 32), rng=random.Random(seed)).to(torch_device) |
|
dummy_image = dummy_image / 2 + 0.5 |
|
generator = torch.manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": [ |
|
"A painting of a squirrel eating a burger", |
|
"A painting of a burger eating a squirrel", |
|
], |
|
"image": dummy_image.cpu(), |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"generator": generator, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def get_dummy_inversion_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"): |
|
inputs = self.get_dummy_inversion_inputs(device, seed) |
|
|
|
if input_image_type == "pt": |
|
image = inputs["image"] |
|
elif input_image_type == "np": |
|
image = VaeImageProcessor.pt_to_numpy(inputs["image"]) |
|
elif input_image_type == "pil": |
|
image = VaeImageProcessor.pt_to_numpy(inputs["image"]) |
|
image = VaeImageProcessor.numpy_to_pil(image) |
|
else: |
|
raise ValueError(f"unsupported input_image_type {input_image_type}") |
|
|
|
inputs["image"] = image |
|
inputs["output_type"] = output_type |
|
|
|
return inputs |
|
|
|
def test_save_load_optional_components(self): |
|
if not hasattr(self.pipeline_class, "_optional_components"): |
|
return |
|
|
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
for optional_component in pipe._optional_components: |
|
setattr(pipe, optional_component, None) |
|
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = pipe(**inputs)[0] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
pipe.save_pretrained(tmpdir) |
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) |
|
pipe_loaded.to(torch_device) |
|
pipe_loaded.set_progress_bar_config(disable=None) |
|
|
|
for optional_component in pipe._optional_components: |
|
self.assertTrue( |
|
getattr(pipe_loaded, optional_component) is None, |
|
f"`{optional_component}` did not stay set to None after loading.", |
|
) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output_loaded = pipe_loaded(**inputs)[0] |
|
|
|
max_diff = np.abs(output - output_loaded).max() |
|
self.assertLess(max_diff, 1e-4) |
|
|
|
def test_stable_diffusion_pix2pix_zero_inversion(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
inputs["image"] = inputs["image"][:1] |
|
inputs["prompt"] = inputs["prompt"][:1] |
|
image = sd_pipe.invert(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.4823, 0.4783, 0.5638, 0.5201, 0.5247, 0.5644, 0.5029, 0.5404, 0.5062]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_inversion_batch(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inversion_inputs(device) |
|
image = sd_pipe.invert(**inputs).images |
|
image_slice = image[1, -3:, -3:, -1] |
|
assert image.shape == (2, 32, 32, 3) |
|
expected_slice = np.array([0.6446, 0.5232, 0.4914, 0.4441, 0.4654, 0.5546, 0.4650, 0.4938, 0.5044]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4863, 0.5053, 0.5033, 0.4007, 0.3571, 0.4768, 0.5176, 0.5277, 0.4940]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_negative_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
negative_prompt = "french fries" |
|
output = sd_pipe(**inputs, negative_prompt=negative_prompt) |
|
image = output.images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5177, 0.5097, 0.5047, 0.4076, 0.3667, 0.4767, 0.5238, 0.5307, 0.4958]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_euler(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = EulerAncestralDiscreteScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear" |
|
) |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.5421, 0.5525, 0.6085, 0.5279, 0.4658, 0.5317, 0.4418, 0.4815, 0.5132]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_ddpm(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
components["scheduler"] = DDPMScheduler() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.4861, 0.5053, 0.5038, 0.3994, 0.3562, 0.4768, 0.5172, 0.5280, 0.4938]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_outputs_equivalent(self): |
|
device = torch_device |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
output_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pt")).images |
|
output_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="np")).images |
|
output_pil = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, output_type="pil")).images |
|
|
|
max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max() |
|
self.assertLess(max_diff, 1e-4, "`output_type=='pt'` generate different results from `output_type=='np'`") |
|
|
|
max_diff = np.abs(np.array(output_pil[0]) - (output_np[0] * 255).round()).max() |
|
self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`") |
|
|
|
def test_stable_diffusion_pix2pix_zero_inversion_pt_np_pil_inputs_equivalent(self): |
|
device = torch_device |
|
components = self.get_dummy_components() |
|
sd_pipe = StableDiffusionPix2PixZeroPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
out_input_pt = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pt")).images |
|
out_input_np = sd_pipe.invert(**self.get_dummy_inversion_inputs_by_type(device, input_image_type="np")).images |
|
out_input_pil = sd_pipe.invert( |
|
**self.get_dummy_inversion_inputs_by_type(device, input_image_type="pil") |
|
).images |
|
|
|
max_diff = np.abs(out_input_pt - out_input_np).max() |
|
self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`") |
|
|
|
assert_mean_pixel_difference(out_input_pil, out_input_np, expected_max_diff=1) |
|
|
|
|
|
@unittest.skip("non-deterministic pipeline") |
|
def test_inference_batch_single_identical(self): |
|
return super().test_inference_batch_single_identical() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class StableDiffusionPix2PixZeroPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
cls.source_embeds = load_pt( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat.pt" |
|
) |
|
|
|
cls.target_embeds = load_pt( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.pt" |
|
) |
|
|
|
def get_inputs(self, seed=0): |
|
generator = torch.manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "turn him into a cyborg", |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 7.5, |
|
"cross_attention_guidance_amount": 0.15, |
|
"source_embeds": self.source_embeds, |
|
"target_embeds": self.target_embeds, |
|
"output_type": "numpy", |
|
} |
|
return inputs |
|
|
|
def test_stable_diffusion_pix2pix_zero_default(self): |
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.5742, 0.5757, 0.5747, 0.5781, 0.5688, 0.5713, 0.5742, 0.5664, 0.5747]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_pix2pix_zero_k_lms(self): |
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.6367, 0.5459, 0.5146, 0.5479, 0.4905, 0.4753, 0.4961, 0.4629, 0.4624]) |
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2 |
|
|
|
def test_stable_diffusion_pix2pix_zero_intermediate_state(self): |
|
number_of_steps = 0 |
|
|
|
def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None: |
|
callback_fn.has_been_called = True |
|
nonlocal number_of_steps |
|
number_of_steps += 1 |
|
if step == 1: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.1345, 0.268, 0.1539, 0.0726, 0.0959, 0.2261, -0.2673, 0.0277, -0.2062]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
elif step == 2: |
|
latents = latents.detach().cpu().numpy() |
|
assert latents.shape == (1, 4, 64, 64) |
|
latents_slice = latents[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.1393, 0.2637, 0.1617, 0.0724, 0.0987, 0.2271, -0.2666, 0.0299, -0.2104]) |
|
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 |
|
|
|
callback_fn.has_been_called = False |
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs() |
|
pipe(**inputs, callback=callback_fn, callback_steps=1) |
|
assert callback_fn.has_been_called |
|
assert number_of_steps == 3 |
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe = pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing(1) |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
inputs = self.get_inputs() |
|
_ = pipe(**inputs) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 8.2 * 10**9 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class InversionPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@classmethod |
|
def setUpClass(cls): |
|
raw_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png" |
|
) |
|
|
|
raw_image = raw_image.convert("RGB").resize((512, 512)) |
|
|
|
cls.raw_image = raw_image |
|
|
|
def test_stable_diffusion_pix2pix_inversion(self): |
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) |
|
|
|
caption = "a photography of a cat with flowers" |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) |
|
inv_latents = output[0] |
|
|
|
image_slice = inv_latents[0, -3:, -3:, -1].flatten() |
|
|
|
assert inv_latents.shape == (1, 4, 64, 64) |
|
expected_slice = np.array([0.8447, -0.0730, 0.7588, -1.2070, -0.4678, 0.1511, -0.8555, 1.1816, -0.7666]) |
|
|
|
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 |
|
|
|
def test_stable_diffusion_2_pix2pix_inversion(self): |
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) |
|
|
|
caption = "a photography of a cat with flowers" |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe.invert(caption, image=self.raw_image, generator=generator, num_inference_steps=10) |
|
inv_latents = output[0] |
|
|
|
image_slice = inv_latents[0, -3:, -3:, -1].flatten() |
|
|
|
assert inv_latents.shape == (1, 4, 64, 64) |
|
expected_slice = np.array([0.8970, -0.1611, 0.4766, -1.1162, -0.5923, 0.1050, -0.9678, 1.0537, -0.6050]) |
|
|
|
assert np.abs(expected_slice - image_slice.cpu().numpy()).max() < 5e-2 |
|
|
|
def test_stable_diffusion_pix2pix_full(self): |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog.npy" |
|
) |
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) |
|
|
|
caption = "a photography of a cat with flowers" |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe.invert(caption, image=self.raw_image, generator=generator) |
|
inv_latents = output[0] |
|
|
|
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] |
|
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] |
|
|
|
source_embeds = pipe.get_embeds(source_prompts) |
|
target_embeds = pipe.get_embeds(target_prompts) |
|
|
|
image = pipe( |
|
caption, |
|
source_embeds=source_embeds, |
|
target_embeds=target_embeds, |
|
num_inference_steps=50, |
|
cross_attention_guidance_amount=0.15, |
|
generator=generator, |
|
latents=inv_latents, |
|
negative_prompt=caption, |
|
output_type="np", |
|
).images |
|
|
|
max_diff = np.abs(expected_image - image).mean() |
|
assert max_diff < 0.05 |
|
|
|
def test_stable_diffusion_2_pix2pix_full(self): |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/dog_2.npy" |
|
) |
|
|
|
pipe = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) |
|
|
|
caption = "a photography of a cat with flowers" |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.manual_seed(0) |
|
output = pipe.invert(caption, image=self.raw_image, generator=generator) |
|
inv_latents = output[0] |
|
|
|
source_prompts = 4 * ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] |
|
target_prompts = 4 * ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] |
|
|
|
source_embeds = pipe.get_embeds(source_prompts) |
|
target_embeds = pipe.get_embeds(target_prompts) |
|
|
|
image = pipe( |
|
caption, |
|
source_embeds=source_embeds, |
|
target_embeds=target_embeds, |
|
num_inference_steps=125, |
|
cross_attention_guidance_amount=0.015, |
|
generator=generator, |
|
latents=inv_latents, |
|
negative_prompt=caption, |
|
output_type="np", |
|
).images |
|
|
|
mean_diff = np.abs(expected_image - image).mean() |
|
assert mean_diff < 0.25 |
|
|