File size: 3,622 Bytes
ca2225b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a38e237
ca2225b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bec59c
 
 
7fadae4
9bec59c
 
 
 
 
 
 
 
 
7fadae4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-parsbert-uncased-ontonotesv5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-parsbert-uncased-ontonotesv5

This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the [ontonotes5-persian](https://huggingface.co/datasets/Amir13/ontonotes5-persian) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2169
- Precision: 0.8145
- Recall: 0.8287
- F1: 0.8215
- Accuracy: 0.9741

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1029        | 1.0   | 2310  | 0.1151          | 0.8080    | 0.7559 | 0.7811 | 0.9691   |
| 0.059         | 2.0   | 4620  | 0.1098          | 0.7909    | 0.8068 | 0.7988 | 0.9719   |
| 0.0363        | 3.0   | 6930  | 0.1205          | 0.7981    | 0.8168 | 0.8074 | 0.9728   |
| 0.0202        | 4.0   | 9240  | 0.1406          | 0.8115    | 0.8046 | 0.8080 | 0.9726   |
| 0.0122        | 5.0   | 11550 | 0.1496          | 0.7847    | 0.8225 | 0.8031 | 0.9721   |
| 0.0105        | 6.0   | 13860 | 0.1633          | 0.7962    | 0.8188 | 0.8073 | 0.9724   |
| 0.0057        | 7.0   | 16170 | 0.1842          | 0.8071    | 0.8133 | 0.8102 | 0.9729   |
| 0.0041        | 8.0   | 18480 | 0.1913          | 0.8081    | 0.8093 | 0.8087 | 0.9727   |
| 0.003         | 9.0   | 20790 | 0.1935          | 0.8121    | 0.8130 | 0.8126 | 0.9732   |
| 0.002         | 10.0  | 23100 | 0.1992          | 0.8136    | 0.8214 | 0.8175 | 0.9734   |
| 0.002         | 11.0  | 25410 | 0.2037          | 0.8014    | 0.8280 | 0.8145 | 0.9735   |
| 0.0012        | 12.0  | 27720 | 0.2092          | 0.8133    | 0.8204 | 0.8168 | 0.9737   |
| 0.001         | 13.0  | 30030 | 0.2095          | 0.8125    | 0.8253 | 0.8188 | 0.9739   |
| 0.0006        | 14.0  | 32340 | 0.2143          | 0.8129    | 0.8272 | 0.8200 | 0.9740   |
| 0.0005        | 15.0  | 34650 | 0.2169          | 0.8145    | 0.8287 | 0.8215 | 0.9741   |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2

## Citation
If you used the datasets and models in this repository, please cite it.
```bibtex
@misc{https://doi.org/10.48550/arxiv.2302.09611,
  doi = {10.48550/ARXIV.2302.09611},
  url = {https://arxiv.org/abs/2302.09611},
  author = {Sartipi, Amir and Fatemi, Afsaneh},
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English},
  publisher = {arXiv},
  year = {2023},
  copyright = {arXiv.org perpetual, non-exclusive license}
}
```