AmirlyPhd's picture
AmirlyPhd/final_V4_resized_balanced_Bert_balanced_dataset-after-adding-new-words-text-classification-model
8b8c7e1 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      final_V4_resized_balanced_Bert_balanced_dataset-after-adding-new-words-text-classification-model
    results: []

final_V4_resized_balanced_Bert_balanced_dataset-after-adding-new-words-text-classification-model

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7809
  • Accuracy: 0.5419
  • F1: 0.5
  • Precision: 0.5
  • Recall: 0.5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.8374 0.06 50 1.8580 0.1350 0.0735 0.0910 0.1771
1.1067 0.12 100 1.7265 0.4003 0.2554 0.3101 0.3385
0.5553 0.18 150 0.9466 0.7571 0.5029 0.5522 0.5495
0.2362 0.25 200 0.8960 0.8595 0.7592 0.7701 0.7770
0.2549 0.31 250 0.9180 0.8623 0.7585 0.7737 0.7785
0.1716 0.37 300 0.9975 0.8646 0.7807 0.7630 0.8138
0.2299 0.43 350 0.8119 0.8614 0.7843 0.7481 0.8354
0.1657 0.49 400 0.9501 0.8657 0.7878 0.7724 0.8215
0.1585 0.55 450 1.0274 0.8661 0.7962 0.7708 0.8367
0.1856 0.61 500 1.0357 0.8675 0.7948 0.7554 0.8510
0.1002 0.67 550 1.1383 0.8657 0.7978 0.7673 0.8423
0.1505 0.74 600 1.0459 0.8678 0.7981 0.7646 0.8477
0.1264 0.8 650 0.9859 0.8692 0.8048 0.7781 0.8467
0.13 0.86 700 1.0246 0.8678 0.7947 0.7569 0.8496
0.1151 0.92 750 0.5834 0.8764 0.8223 0.8837 0.8621
0.1776 0.98 800 1.0297 0.8675 0.7903 0.7773 0.8202
0.0488 1.04 850 1.0348 0.8700 0.8038 0.7724 0.8504
0.0752 1.1 900 1.1004 0.8675 0.7839 0.7725 0.8136
0.0696 1.17 950 1.1802 0.8701 0.8020 0.7756 0.8438
0.0743 1.23 1000 1.1167 0.8695 0.8065 0.7791 0.8490
0.0757 1.29 1050 1.1188 0.8704 0.8078 0.7795 0.8516
0.0757 1.35 1100 0.7870 0.8692 0.8062 0.7816 0.8460
0.0847 1.41 1150 1.0518 0.8698 0.8045 0.7791 0.8450
0.0502 1.47 1200 1.1333 0.8689 0.7993 0.7679 0.8469
0.0516 1.53 1250 1.2185 0.8626 0.7707 0.7217 0.8429
0.0841 1.6 1300 1.2722 0.8689 0.8026 0.7798 0.8404
0.1063 1.66 1350 1.2437 0.8690 0.8008 0.7808 0.8362
0.097 1.72 1400 1.1243 0.8684 0.7930 0.7836 0.8201
0.0746 1.78 1450 1.2221 0.8701 0.8072 0.7801 0.8498
0.0726 1.84 1500 0.7919 0.8676 0.8076 0.7799 0.8500
0.0779 1.9 1550 1.1613 0.8704 0.8092 0.7837 0.8500
0.0895 1.96 1600 1.0377 0.8704 0.8060 0.7788 0.8485
0.0481 2.02 1650 1.1583 0.8710 0.8087 0.7810 0.8520
0.0266 2.09 1700 1.1655 0.8687 0.8020 0.7734 0.8452
0.0403 2.15 1750 1.2421 0.8707 0.8066 0.7777 0.8509
0.0116 2.21 1800 1.2306 0.8701 0.8048 0.7778 0.8474
0.0287 2.27 1850 1.2461 0.8700 0.8057 0.7784 0.8487
0.0197 2.33 1900 1.2199 0.8612 0.7937 0.7568 0.8451
0.0325 2.39 1950 1.3021 0.8703 0.8051 0.7785 0.8472
0.0443 2.45 2000 1.2395 0.8703 0.8061 0.7771 0.8503
0.0189 2.52 2050 1.2496 0.8704 0.8052 0.7812 0.8449
0.0056 2.58 2100 1.2561 0.8706 0.8073 0.7772 0.8527
0.0188 2.64 2150 1.2711 0.8706 0.8053 0.7818 0.8443
0.0287 2.7 2200 1.2728 0.8706 0.8068 0.7781 0.8504
0.0487 2.76 2250 1.1602 0.8710 0.8074 0.7802 0.8499
0.0409 2.82 2300 1.0628 0.8706 0.8061 0.7760 0.8510
0.053 2.88 2350 1.1891 0.8707 0.8076 0.7779 0.8526
0.0109 2.94 2400 1.2429 0.8700 0.8065 0.7811 0.8476
0.0392 3.01 2450 1.2635 0.8709 0.8058 0.7759 0.8509
0.0237 3.07 2500 1.2678 0.8703 0.8023 0.7817 0.8386
0.007 3.13 2550 1.2495 0.8709 0.8077 0.7812 0.8497
0.009 3.19 2600 1.2368 0.8715 0.8091 0.7807 0.8529
0.0022 3.25 2650 1.2436 0.8707 0.8055 0.7829 0.8435
0.0175 3.31 2700 1.2469 0.8712 0.8079 0.7818 0.8493
0.0037 3.37 2750 1.2342 0.8710 0.8068 0.7781 0.8510
0.0091 3.44 2800 1.2489 0.8701 0.8041 0.7780 0.8459
0.0008 3.5 2850 1.2252 0.8709 0.8059 0.7742 0.8532
0.005 3.56 2900 1.2281 0.8696 0.8030 0.7693 0.8522
0.0004 3.62 2950 1.2746 0.8704 0.8052 0.7760 0.8501
0.0009 3.68 3000 1.2903 0.8706 0.8054 0.7760 0.8504
0.001 3.74 3050 1.2960 0.8712 0.8060 0.7780 0.8492
0.0002 3.8 3100 1.3036 0.8712 0.8060 0.7780 0.8492
0.0185 3.87 3150 1.3224 0.8701 0.8048 0.7797 0.8453
0.0013 3.93 3200 1.3236 0.8707 0.8064 0.7780 0.8503
0.0003 3.99 3250 1.3241 0.8710 0.8068 0.7780 0.8509
0.0128 4.05 3300 1.3175 0.8704 0.8075 0.7794 0.8504
0.0005 4.11 3350 1.3160 0.8709 0.8078 0.7797 0.8508
0.0147 4.17 3400 1.3180 0.8712 0.8078 0.7803 0.8505
0.0064 4.23 3450 1.3197 0.8710 0.8076 0.7793 0.8510
0.0009 4.29 3500 1.3245 0.8712 0.8080 0.7800 0.8512
0.0002 4.36 3550 1.3336 0.8712 0.8079 0.7820 0.8491
0.0131 4.42 3600 1.3113 0.8710 0.8076 0.7794 0.8511
0.0003 4.48 3650 1.3200 0.8712 0.8079 0.7820 0.8491
0.0005 4.54 3700 1.3258 0.8712 0.8080 0.7841 0.8472
0.0102 4.6 3750 1.3177 0.8712 0.8079 0.7797 0.8512
0.0161 4.66 3800 1.3042 0.8712 0.8077 0.7794 0.8512
0.0178 4.72 3850 1.3133 0.8710 0.8076 0.7794 0.8511
0.0067 4.79 3900 1.3154 0.8709 0.8076 0.7793 0.8510
0.0191 4.85 3950 1.3187 0.8715 0.8103 0.7843 0.8516
0.0048 4.91 4000 1.3218 0.8713 0.8091 0.7842 0.8492
0.0046 4.97 4050 1.3220 0.8715 0.8103 0.7843 0.8516

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2