Ananthu357's picture
Add new SentenceTransformer model.
a288b8e verified
metadata
base_model: BAAI/bge-large-en
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:458
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: What does the document say about GST ?
    sentences:
      - >-
        If any ambiguity arises as to the meaning and intent of any portion of
        the Specifications and Drawings or as to execution or quality of any
        work or material, or as to the measurements of the works the decision of
        the Engineer thereon shall be final subject to the appeal
      - >-
        For tenders costing more than Rs 20 crore wherein eligibility criteria
        includes bid capacity also, the tenderer will be qualified only if its
        available bid capacity is equal to or more than the total bid value of
        the present tender. The available bid capacity shall be calculated.
      - >-
        Tenderers will examine the various provisions of The Central Goods and
        Services Tax Act, 2017(CGST)/ Integrated Goods and Services Tax Act,
        2017(IGST)/ Union Territory Goods and Services Tax Act, 2017(UTGST)/
  - source_sentence: What is the deadline to submit the proposed project schedule?
    sentences:
      - >-
        The Contractor who has been awarded the work shall as soon as possible
        but not later than 30 days after the date of receipt of the acceptance
        letter
      - "\_ \_ \_ \_ Special Conditions can modify the Standard General Conditions."
      - >-
        Limited Tenders shall mean tenders invited from all or some contractors
        on the approved or select list of contractors with the Railway
  - source_sentence: >-
      These Regulations for Tenders and Contracts shall be read in conjunction
      with the Standard General Conditions of Contract which are referred to
      herein and shall be subject to modifications additions or suppression by
      Special Conditions of Contract and/or Special Specifications, if any,
      annexed to the Tender Forms.
    sentences:
      - >-
        unless the Contractor has made a claim in writing in respect thereof
        before the issue of the Maintenance Certificate under this clause.
      - There shall be no modification expected.
      - Indemnification clause
  - source_sentence: No claim certificate
    sentences:
      - >-
        Subcontracting will in no way relieve the Contractor to execute the work
        as per terms of the contract.
      - Final Supplementary Agreement
      - Client can transfer the liability to the contractor
  - source_sentence: What is the deadline to submit the proposed project schedule?
    sentences:
      - "\_ \_ \_ \_ The Contractor shall at his own expense provide with sheds, storehouses and yards in such situations and in such numbers"
      - >-
        This clause defines the Contractor's responsibility for subcontractor
        performance.
      - >-
        Any item of work carried out by the Contractor on the instructions of
        the Engineer which is not included in the accepted Schedules of Rates
        shall be executed at the rates set forth in the Schedule of Rates of
        Railway.

SentenceTransformer based on BAAI/bge-large-en

This is a sentence-transformers model finetuned from BAAI/bge-large-en. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-large-en
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Ananthu357/Ananthus-BAAI-for-contracts6.0")
# Run inference
sentences = [
    'What is the deadline to submit the proposed project schedule?',
    'Any item of work carried out by the Contractor on the instructions of the Engineer which is not included in the accepted Schedules of Rates shall be executed at the rates set forth in the Schedule of Rates of Railway.',
    '\xa0 \xa0 \xa0 \xa0 The Contractor shall at his own expense provide with sheds, storehouses and yards in such situations and in such numbers',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 25
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 25
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
3.3448 100 0.0661 0.0479
6.6897 200 0.0106 0.0539
10.0345 300 0.004 0.0505
13.3448 400 0.0022 0.0506
16.6897 500 0.0012 0.0512
20.0345 600 0.001 0.0512
23.3448 700 0.0009 0.0516

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}