Andresckamilo's picture
Add new SentenceTransformer model.
1b05214 verified
|
raw
history blame
28 kB
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
widget:
  - source_sentence: What types of industries does TTI service?
    sentences:
      - What types of businesses does HPE serve?
      - How much did the company's revenues decrease in 2023 compared to 2022?
      - >-
        By what percentage did the quarterly cash dividend increase on January
        26, 2023?
  - source_sentence: What does ITEM 8 in Form 10-K refer to?
    sentences:
      - >-
        ITEM 8 in Form 10-K refers to the Financial Statements and Supplementary
        Data.
      - UnitedHealth Group reported net earnings of $23,144 million in 2023.
      - >-
        What factors contributed to the decrease in automotive leasing revenue
        in 2023?
  - source_sentence: What are consolidated financial statements?
    sentences:
      - >-
        The report on the Consolidated Financial Statements is dated February
        16, 2024.
      - How much did the foreclosed properties decrease in value during 2023?
      - What was Chipotle Mexican Grill's net income in 2023?
  - source_sentence: What were the total product sales in 2023?
    sentences:
      - Total product sales in 2023 amounted to $27,305 million.
      - How does AutoZone manage its foreign operations in terms of currency?
      - >-
        What restrictions does the Bank Holding Company Act impose on JPMorgan
        Chase?
  - source_sentence: What is the global presence of Lubrizol?
    sentences:
      - >-
        How does The Coca-Cola Company distribute its beverage products
        globally?
      - What are the two operating segments of NVIDIA as mentioned in the text?
      - >-
        How much did Delta Air Lines spend on debt and finance lease obligations
        in 2023?
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.6957142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8342857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8628571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9085714285714286
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6957142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2780952380952381
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17257142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09085714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6957142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8342857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8628571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9085714285714286
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8045138729797765
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7709591836734694
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7746687336147619
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8271428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8642857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9157142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2757142857142857
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17285714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09157142857142857
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8271428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8642857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9157142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.807258910509631
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7726218820861678
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7757170101327764
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6928571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.82
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8585714285714285
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9028571428571428
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6928571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2733333333333334
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1717142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09028571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6928571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.82
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8585714285714285
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9028571428571428
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7979490809476271
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7643027210884353
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7684617620062486
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6857142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.81
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.89
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6857142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714282
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.089
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6857142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.81
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.89
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7877753635329912
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7549472789115641
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7596045003108374
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6528571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7571428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8185714285714286
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8685714285714285
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6528571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2523809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1637142857142857
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08685714285714284
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6528571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7571428571428571
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8185714285714286
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8685714285714285
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7557078446701566
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7201400226757368
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7249497855774768
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Andresckamilo/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'What is the global presence of Lubrizol?',
    'How does The Coca-Cola Company distribute its beverage products globally?',
    'What are the two operating segments of NVIDIA as mentioned in the text?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6957
cosine_accuracy@3 0.8343
cosine_accuracy@5 0.8629
cosine_accuracy@10 0.9086
cosine_precision@1 0.6957
cosine_precision@3 0.2781
cosine_precision@5 0.1726
cosine_precision@10 0.0909
cosine_recall@1 0.6957
cosine_recall@3 0.8343
cosine_recall@5 0.8629
cosine_recall@10 0.9086
cosine_ndcg@10 0.8045
cosine_mrr@10 0.771
cosine_map@100 0.7747

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8271
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9157
cosine_precision@1 0.7
cosine_precision@3 0.2757
cosine_precision@5 0.1729
cosine_precision@10 0.0916
cosine_recall@1 0.7
cosine_recall@3 0.8271
cosine_recall@5 0.8643
cosine_recall@10 0.9157
cosine_ndcg@10 0.8073
cosine_mrr@10 0.7726
cosine_map@100 0.7757

Information Retrieval

Metric Value
cosine_accuracy@1 0.6929
cosine_accuracy@3 0.82
cosine_accuracy@5 0.8586
cosine_accuracy@10 0.9029
cosine_precision@1 0.6929
cosine_precision@3 0.2733
cosine_precision@5 0.1717
cosine_precision@10 0.0903
cosine_recall@1 0.6929
cosine_recall@3 0.82
cosine_recall@5 0.8586
cosine_recall@10 0.9029
cosine_ndcg@10 0.7979
cosine_mrr@10 0.7643
cosine_map@100 0.7685

Information Retrieval

Metric Value
cosine_accuracy@1 0.6857
cosine_accuracy@3 0.81
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.89
cosine_precision@1 0.6857
cosine_precision@3 0.27
cosine_precision@5 0.1709
cosine_precision@10 0.089
cosine_recall@1 0.6857
cosine_recall@3 0.81
cosine_recall@5 0.8543
cosine_recall@10 0.89
cosine_ndcg@10 0.7878
cosine_mrr@10 0.7549
cosine_map@100 0.7596

Information Retrieval

Metric Value
cosine_accuracy@1 0.6529
cosine_accuracy@3 0.7571
cosine_accuracy@5 0.8186
cosine_accuracy@10 0.8686
cosine_precision@1 0.6529
cosine_precision@3 0.2524
cosine_precision@5 0.1637
cosine_precision@10 0.0869
cosine_recall@1 0.6529
cosine_recall@3 0.7571
cosine_recall@5 0.8186
cosine_recall@10 0.8686
cosine_ndcg@10 0.7557
cosine_mrr@10 0.7201
cosine_map@100 0.7249

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 45.39 tokens
    • max: 371 tokens
    • min: 7 tokens
    • mean: 20.23 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Chubb mitigates exposure to climate change risk by ceding catastrophe risk in our insurance portfolio through both reinsurance and capital markets, and our investment portfolio through the diversification of risk, industry, location, type and duration of security. How does Chubb respond to the risks associated with climate change?
    Item 8 of Part IV in the Annual Report on Form 10-K details the consolidated financial statements and accompanying notes. What documents are detailed in Item 8 of Part IV of the Annual Report on Form 10-K?
    While the outcome of this matter cannot be determined at this time, it is not currently expected to have a material adverse impact on our business. Is the outcome of the investigation into Tesla's waste segregation practices currently determinable?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.521 - - - - -
0.9746 12 - 0.7434 0.7579 0.7641 0.6994 0.7678
1.6244 20 0.6597 - - - - -
1.9492 24 - 0.7583 0.7628 0.7726 0.7219 0.7735
2.4365 30 0.4472 - - - - -
2.9239 36 - 0.7578 0.7661 0.7747 0.7251 0.7753
3.2487 40 0.3865 - - - - -
3.8985 48 - 0.7596 0.7685 0.7757 0.7249 0.7747
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}