|
--- |
|
language: |
|
- ja |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- ja |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
model-index: |
|
- name: XLS-R-300-m |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8 |
|
type: mozilla-foundation/common_voice_8_0 |
|
args: ja |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 95.82 |
|
- name: Test CER |
|
type: cer |
|
value: 23.64 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: de |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 100.0 |
|
- name: Test CER |
|
type: cer |
|
value: 30.99 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: ja |
|
metrics: |
|
- name: Test CER |
|
type: cer |
|
value: 30.37 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: ja |
|
metrics: |
|
- name: Test CER |
|
type: cer |
|
value: 34.42 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. |
|
|
|
Kanji are converted into Hiragana using the [pykakasi](https://pykakasi.readthedocs.io/en/latest/index.html) library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable. |
|
|
|
On mozilla-foundation/common_voice_8_0 it achieved: |
|
- cer: 23.64% |
|
|
|
On speech-recognition-community-v2/dev_data it achieved: |
|
- cer: 30.99% |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5212 |
|
- Wer: 1.3068 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 4.0974 | 4.72 | 1000 | 4.0178 | 1.9535 | |
|
| 2.1276 | 9.43 | 2000 | 0.9301 | 1.2128 | |
|
| 1.7622 | 14.15 | 3000 | 0.7103 | 1.5527 | |
|
| 1.6397 | 18.87 | 4000 | 0.6729 | 1.4269 | |
|
| 1.5468 | 23.58 | 5000 | 0.6087 | 1.2497 | |
|
| 1.4885 | 28.3 | 6000 | 0.5786 | 1.3222 | |
|
| 1.451 | 33.02 | 7000 | 0.5726 | 1.3768 | |
|
| 1.3912 | 37.74 | 8000 | 0.5518 | 1.2497 | |
|
| 1.3617 | 42.45 | 9000 | 0.5352 | 1.2694 | |
|
| 1.3113 | 47.17 | 10000 | 0.5228 | 1.2781 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|
|
#### Evaluation Commands |
|
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs |
|
``` |
|
|
|
2. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` |
|
|
|
```bash |
|
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |