Training procedure

The following bitsandbytes quantization config was used during training:

  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float16

Framework versions

  • PEFT 0.4.0
# adding back the LoRA adopters to the base Llama-2 model

lora_config = LoraConfig.from_pretrained('Andyrasika/qlora-dialogue-summary')
model = get_peft_model(model, lora_config)

inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_new_tokens=100 ,repetition_penalty=1.2)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train Andyrasika/qlora-dialogue-summary