llama3-2M-MedEV
This model is a fine-tuned version of unsloth/llama-3-8b-Instruct-bnb-4bit on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4249
- Bleu: 47.7973
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
1.534 |
0.1200 |
320 |
1.4902 |
1.3171 |
0.2399 |
640 |
1.4705 |
1.29 |
0.3599 |
960 |
1.4644 |
1.2699 |
0.4798 |
1280 |
1.4287 |
1.2567 |
0.5998 |
1600 |
1.4576 |
1.2448 |
0.7197 |
1920 |
1.4196 |
1.2353 |
0.8397 |
2240 |
1.4249 |
1.2274 |
0.9596 |
2560 |
1.4172 |
1.1635 |
1.0796 |
2880 |
1.4180 |
1.1337 |
1.1995 |
3200 |
1.4219 |
1.1346 |
1.3195 |
3520 |
1.3954 |
1.131 |
1.4394 |
3840 |
1.3714 |
1.1325 |
1.5594 |
4160 |
1.3923 |
1.1269 |
1.6793 |
4480 |
1.4118 |
1.1221 |
1.7993 |
4800 |
1.4251 |
1.1226 |
1.9192 |
5120 |
1.3970 |
1.0898 |
2.0392 |
5440 |
1.4198 |
1.0372 |
2.1591 |
5760 |
1.4310 |
1.0325 |
2.2791 |
6080 |
1.4209 |
1.0334 |
2.3990 |
6400 |
1.4205 |
1.0328 |
2.5190 |
6720 |
1.4306 |
1.0303 |
2.6389 |
7040 |
1.4222 |
1.0283 |
2.7589 |
7360 |
1.4266 |
1.0273 |
2.8788 |
7680 |
1.4251 |
1.0295 |
2.9988 |
8000 |
1.4249 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1