llama3-QA-ViMMRC-Squad-v1.1

This model is a fine-tuned version of unsloth/llama-3-8b-Instruct-bnb-4bit on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6506

Model description

More information needed

Intended uses & limitations

  • Prompt 1: Given the following reference, create a question and a corresponding answer to the question: + [context]
  • Prompt 2: Given the following reference, create a multiple-choice question and its corresponding answer: + [context]

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.8259 0.2307 320 1.8769
1.611 0.4614 640 1.9125
1.4266 0.6921 960 1.9795
1.2355 0.9229 1280 2.0370
0.9715 1.1536 1600 2.1435
0.7983 1.3843 1920 2.2154
0.6768 1.6150 2240 2.3018
0.5643 1.8457 2560 2.3872
0.4374 2.0764 2880 2.5030
0.325 2.3071 3200 2.5655
0.2927 2.5379 3520 2.6038
0.2688 2.7686 3840 2.6470
0.2641 2.9993 4160 2.6506

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Angelectronic/llama3-QA-ViMMRC-Squad-v1.1

Adapter
(69)
this model