|
--- |
|
language: ru |
|
tags: |
|
- audio-classification |
|
- audio |
|
- emotion |
|
- emotion-recognition |
|
- emotion-classification |
|
- speech |
|
license: mit |
|
datasets: |
|
- Aniemore/resd |
|
model-index: |
|
- name: XLS-R Wav2Vec2 For Russian Speech Emotion Classification by Nikita Davidchuk |
|
results: |
|
- task: |
|
name: Audio Emotion Recognition |
|
type: audio-emotion-recognition |
|
dataset: |
|
name: Russian Emotional Speech Dialogs |
|
type: Aniemore/resd |
|
args: ru |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 72% |
|
--- |
|
|
|
# Prepare and importing |
|
|
|
```python |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor |
|
|
|
import librosa |
|
import numpy as np |
|
|
|
|
|
def speech_file_to_array_fn(path, sampling_rate): |
|
speech_array, _sampling_rate = torchaudio.load(path) |
|
resampler = torchaudio.transforms.Resample(_sampling_rate) |
|
speech = resampler(speech_array).squeeze().numpy() |
|
return speech |
|
|
|
|
|
def predict(path, sampling_rate): |
|
speech = speech_file_to_array_fn(path, sampling_rate) |
|
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
inputs = {key: inputs[key].to(device) for key in inputs} |
|
|
|
with torch.no_grad(): |
|
logits = model_(**inputs).logits |
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] |
|
return outputs |
|
``` |
|
|
|
# Evoking: |
|
|
|
```python |
|
TRUST = True |
|
|
|
config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) |
|
model_ = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model_.to(device) |
|
``` |
|
|
|
# Use case |
|
|
|
```python |
|
result = predict("/path/to/russian_audio_speech.wav", 16000) |
|
print(result) |
|
``` |
|
|
|
```python |
|
# outputs |
|
[{'Emotion': 'anger', 'Score': '0.0%'}, |
|
{'Emotion': 'disgust', 'Score': '100.0%'}, |
|
{'Emotion': 'enthusiasm', 'Score': '0.0%'}, |
|
{'Emotion': 'fear', 'Score': '0.0%'}, |
|
{'Emotion': 'happiness', 'Score': '0.0%'}, |
|
{'Emotion': 'neutral', 'Score': '0.0%'}, |
|
{'Emotion': 'sadness', 'Score': '0.0%'}] |
|
``` |
|
|
|
# Results |
|
|
|
| | precision | recall | f1-score | support | |
|
|--------------|-----------|--------|----------|---------| |
|
| anger | 0.97 | 0.86 | 0.92 | 44 | |
|
| disgust | 0.71 | 0.78 | 0.74 | 37 | |
|
| enthusiasm | 0.51 | 0.80 | 0.62 | 40 | |
|
| fear | 0.80 | 0.62 | 0.70 | 45 | |
|
| happiness | 0.66 | 0.70 | 0.68 | 44 | |
|
| neutral | 0.81 | 0.66 | 0.72 | 38 | |
|
| sadness | 0.79 | 0.59 | 0.68 | 32 | |
|
| accuracy | | | 0.72 | 280 | |
|
| macro avg | 0.75 | 0.72 | 0.72 | 280 | |
|
| weighted avg | 0.75 | 0.72 | 0.73 | 280 | |
|
|
|
# Citations |
|
``` |
|
@misc{Aniemore, |
|
author = {Артем Аментес, Илья Лубенец, Никита Давидчук}, |
|
title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека}, |
|
year = {2022}, |
|
publisher = {Hugging Face}, |
|
journal = {Hugging Face Hub}, |
|
howpublished = {\url{https://huggingface.com/aniemore/Aniemore}}, |
|
email = {[email protected]} |
|
} |
|
``` |